X-ray haloes and galaxy structure

S. Pellegrini

in collaboration with **A. Negri, S. Posacki, L. Ciotti** (*Dept. of Physics and Astronomy*, University of Bologna, Italy)

Effects of galaxy **shape**

and internal stellar kinematics

kinematics along major axis

2D spectroscopy:

of early-type galaxies (ETGs)

NGC1404: Chandra image

S. Pellegrini, X-ray View of Galaxy Ecosystems

Boston, July 9, 2014

OUTLINE

- 1) observational motivations
- 2) expectations for L_X and T_X from purely energetic arguments
- 3) 2D hydrodynamical simulations for realistic galaxy models
- 4) results of simulations vs. observations

1) observational motivations

Observed relations with L_x

the hot gas content depends on the **shape** (ϵ) of the potential well and on the stellar rotational support

Which of the two exerts an influence on the hot gas? How can shape and/or rotation affect L_x ?

Observed relations with L_x

C3457	NGC3757	NGC2679	NGC4649	NGC3073	NGC3379	NGC4382
E C5485	S0 NGC4278	S0 NGC4283	E NGC5500	S0 PGC058114	E NGC3193	S0 NGC4803
SO 3C0770	E NGC3607	E NGC4489	E PGC035754	S0 NGC4608	E NGC4473	SO/a NGC0474
					•	
E C0502	SO NGC4494	E NGC4477	S0 NGC4478	SO NGC4259	E NGC3226	SO NGC3641
•						
SO 3C3694	E NGC4643	S0 IC0719	E UGC04551	S0 UGC05408	E NGC7465	E NGC0821
		-				
E 3C5355	SO NGC4694	S0 NGC5638	SO NGC4434	S0 NGC5770	S0 NGC4621	E NGC2768
S0 C4551	SO NGC3599	E NGC4262	E NGC4697	S0 PGC056772	E PGC170172	E NGC4267
		S0 NGC4203			E NGC4624	S0 PGC071531

MGE reconstruction of images

Cappellari et al. 2011

Emsellem et al. 2011

new optical data for shape and kinematics:

Atlas^{3D} project: volume-limited sample of 260 early-type galaxies (ETGs):

D < 42 Mpc, morphologically selected brighter than $M_K < -21.5$ mag (stellar mass $M_{+} \gtrsim 6 \times 10^9$ M_o)

Integral field spectroscopy extraction of 2D stellar kinematics

L_X and rotational properties/shape for the ETGs of the ATLAS^{3D} sample

(see also Dong-Woo's talk)

slowly rotating (SR) and round ETGs → larger L_x on average than flatter and fast-rotating (FR) ones

 $L_{X, discr}$ = X-ray luminosity of the expected contribution from discrete sources only (X-ray binaries) α L_{K}

2) expectations for L_{χ} and T_{χ} from purely energetic arguments

Origin of the hot ISM: continuous mass loss from evolving stars (Red Giants, AGB, PNe, ...)

The rate of mass loss:

$$\dot{M}_*$$
 (t) ~ 10⁻¹¹ $L_B(L_{B\odot})$ t(12 Gyrs)^{-1.3} M_{\odot}/yr

for a passively evolving stellar population, of age ~1 to over 10 Gyrs (~insensitive to the slope of the IMF).

Present rate $^{\sim}0.1 - 1 \text{ M}_{\odot}/\text{yr}$.

Heating of the stellar mass losses:

M* is heated to X-ray temperatures by thermalization of the kinetic energy

✓ of the stellar motions

✓ of the SNIa's ejecta

(Sarazin & White 87, 88; Loewenstein & Mathews 91; Ciotti et al. 91, David et al. 91, Parriott & Bregman 2011)

NOTE: the stellar **random** kinetic energy is *always* supplied to the ISM

the thermalization of the **ordered** kinetic energy depends on the **relative motion** between stars and ISM

(Pellegrini 2011, Posacki et al. 2013)

$$T_{\sigma} = \frac{\mu m_{\mathrm{P}}}{3k_{\mathrm{B}}M_{*}} \int \rho_{*} \mathrm{Tr}(\sigma^{2}) \mathrm{d}^{3}\mathbf{x}$$

 $oldsymbol{\sigma}^2$ velocity dispersion tensor

mass-weighted temperature for injected gas from thermalization of stellar **random** motions

 $m{T}_{
m rot} = rac{\mu m_{
m P}}{3k_{
m B}M_*} \int
ho_* \|m{u}_{
m ism} \cdot m{v}\|^2 {
m d}^3 m{x}$ $m{v} = ext{stellar streaming velocity}$ $m{u}_{
m ISM} = ext{gas velocity}$

mass-weighted temperature from thermalization of stellar **ordered** motions

Boston, July 9, 2014

S. Pellegrini, X-ray View of Galaxy Ecosystems

- ✓ **Thermalization** of the **ordered** stellar motions: is it high or low? unknown "a priori", it depends on kinematical properties of both stars and ISM
- ✓ **Binding energy** of the ISM:

in **rotating** ETGs, is the ISM rotating as well? If so, it is *less bound* → more prone to an outflow?

in **flat** ETGs, is the ISM binding energy *lower* than in spherical ETGs **of same** L_B ? does this decrease make the hot halo more prone to an outflow?

→ realistic, state-of-the-art galaxy models+ hydrodynamical simulations

Posacki et al. 2013

Negri et al. 2014, MNRAS 439, 823

Negri et al. 2014, MNRAS submitted (eprint arXiv:1406.0008)

3) results from 2D hydrodynamical simulations for realistic galaxy models

hot gas flows behavior for a large set of state-of-the art galaxy models:

- ✓ intrinsic flattening (ε)
- ✓ internal kinematics (galaxy flattening supported by ordered rotation or by tangential anisotropy)
- ✓ distribution of dark matter

The galaxy structure. 1

Axisymmetric (oblate) stellar distribution + spherical NFW or Einasto dark matter halo

de Vaucouleurs (1948) law, generalized for ellipsoidal axisymmetric distributions:

$$\rho_*(R,z) = \rho_0 \xi^{-0.855} \exp(-\xi^{1/4}), \qquad \xi = b^4 \sqrt{R^2 + (z/q)^2} / R_e$$

Stellar projected density for q=1,0.6,0.3 corresponding to **EO**, **E4**, **E7**

Flattening procedure (at fixed L_B):

a spherical E0 "progenitor" model → 2 flat descendants, for each fixed shape (q):

one "FO-built" – same R_e when viewed FACE-on → more concentrated (gas more bound)

one "EO-built" – same (circularized) R_e when viewed EDGE-on → less concentrated (gas less bound)

Stellar & dark halo parameters:

 (L_B, R_e, σ_e) lie on the **Faber-Jackson** and **size-luminosity** relations for 10^5 ETGs in the SDSS (Desroches et al. 2007)

stellar mass-to-light ratios for a 12 Gyr old stellar population with a Kroupa initial mass function (Maraston 2005)

 $M_h(<R_e)/M_{tot}(<R_e)$ <1 as from stellar dynamics and gravitational lensing studies (e.g., Cappellari et al. 2006, Gerhard et al. 2001, Treu & Koopmans 2004)

The galaxy structure. 2

Gravitational force and velocity fields from solving the **Poisson** and the **Jeans equations** with a code built on purpose:

$$\frac{\partial \rho_{\star} \sigma^{2}}{\partial z} = -\rho_{\star} \frac{\partial \Phi_{tot}}{\partial z},$$

$$\frac{\partial \rho_{\star} \sigma^{2}}{\partial R} + \rho_{\star} \frac{\sigma^{2} - \overline{v_{\varphi}^{2}}}{R} = -\rho_{\star} \frac{\partial \Phi_{tot}}{\partial R}.$$

Stellar motions in the azimuthal direction are split into velocity dispersion

and ordered rotation via the Satoh (1980) decomposition: $\overline{v_{\varphi}} = k \sqrt{\overline{v_{\varphi}^2} - \sigma^2}$ that gives: $\sigma_{\omega}^2 \equiv \overline{v_{\varphi}^2} - \overline{v_{\varphi}}^2 = k^2 \sigma^2 + (1 - k^2) \overline{v_{\varphi}^2}$

2 CLASSES OF **MODELS**

VD models: k = 0, no ordered velocity (shape due to σ_{φ}) **IS** (isotropic rotator) models: k = 1 (shape wholly explained by rotation)

S. Pellegrini, X-ray View of Galaxy Ecosystems

The hydrodynamical equations

(with sources of mass, energy, momentum)

velocity of bulk flow

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \dot{\rho}_{SN} + \dot{\rho}_* \equiv \dot{\rho},$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \left(\mathbf{u} \cdot \nabla \right) \mathbf{u} = -\nabla p - \rho \nabla \Phi_{tot} + \dot{\rho} \left(\mathbf{v} - \mathbf{u} \right),$$

$$\frac{\partial E}{\partial t} + \nabla \cdot (E\mathbf{u}) = -p \nabla \cdot \mathbf{u} - \mathcal{L} + \dot{\rho}_{SN} \frac{u_s^2}{2}$$

$$+ \frac{\dot{\rho}}{2} \left[\| \mathbf{v} - \mathbf{u} \|^2 + \text{Tr}(\sigma^2) \right],$$

 ${m v}={m v}_{m arphi}{m e}_{m arphi}$ streaming velocity ${m \sigma}^2$ velocity dispersion tensor

it is also the streaming velocity of injected gas

hydro 2D code ZEUS-MP 2 in cylindrical coordinates (480x960 logarithmically spaced gridpoints)

resolution of 90 pc in the central 10 kpc flow evolution followed for 11 Gyr

for each fixed L_B, hydro simulations explore the parameter space in two "directions":

At each L_B: 9 models = 1 progenitor + 8 descendants (4 FO-built and 4 EO-built)

Boston, July 9, 2014

S. Pellegrini, X-ray View of Galaxy Ecosystems

1st experiment: change of *shape* in a fully VD supported model large $L_B=6x10^{10}L_{B,\odot}$ fixed

smooth maps (meridional sections) of hydrodynamical quantities low flow velocities + central, small cooling core

Arrows: meridional **ISM velocity** field; longest arrows = 127 km/s

SMALL effect of flattening on :

 $L_{\rm X}$ — slightly reduced (both for EO-built and FO-built cases)

 T_X – variations within 10-15%

S. Pellegrini, X-ray View of Galaxy Ecosystems

2nd experiment: change of kinematics

large $L_B = 6x10^{10}L_{B,\odot}$ fixed

large effects: angular momentum conservation → a rotationally supported, thin, dense cold disc forms complex flow pattern (e.g., meridional motions) / instabilities

L_x is **reduced** in rotating models:

- the gas cools on a disk before entering the galactic core region $\rightarrow \Delta \Phi$ reduced;
- the center is less dense than in VD models

L_v reduction not due to the onset of galactic winds, but to redistribution of the gas inside the galaxy

T_{x} is **reduced** in rotating models:

- thermalization of ordered stellar motion is low (the ISM tends to rotate as the stellar body)
- more important gas cooling
- lower density in central (hottest) regions

S. Pellegrini, X-ray View of Galaxy Ecosystems

Boston, July 9, 2014

Lower mass ETGs: a change of shape or rotation can induce a transition to a global wind

3rd experiment: change of shape

low $L_B=2.7x10^{10}L_{B,\odot}$ fixed

change of the flow status:

Spherical (E0) 10 10^{7} z (kpc) 10^{6} -1010 10^1 10^{0} 10^{-1} 10^{-2} 20 20 15 15 R (kpc) R (kpc) t=13 Gyr t=2.4 Gyr

strong **equatorial degassing** at late times

L_x drops to very low values

T_X **larger** than expected from trend of non-wind models (reduced cooling + thermalization of meridional motions)

The effect of flattening (and rotation) is mass-dependent

$$L_X - L_B$$
 $T_X - \sigma$

4) simulation results vs. observations

$$T_x - \sigma$$

$$L_X - T_X$$

At medium-to-high L_R:

small L_X difference for even large variations of the shape weak increase of L_X as the ETG gets rounder

large L_X difference between IS and VD models of same shape angular momentum prevents the gas from accumulating in the central regions, where a hot, low density atmosphere creates

At low L_B :

high sensitivity of the flow to changes in galaxy structure

- \rightarrow flattening and/or rotation can produce the transition to a global wind (low L_x)
- → large L_x variation

at low galactic masses, systematic trends in L_{χ} cannot be predicted

NFW models

Scatter in L_X becomes large at kT_X <0.5 keV: high sensitivity of flow phase to shape/kinematics variations, at lower galaxy masses

Conclusions

- ✓ Dynamical modeling \rightarrow flattening (at fixed L_B) can increase or lower the depth of the potential well
- ✓ Simulations → the **ISM rotation field** is **similar** to that of the **stellar** component
 - low thermalization of the stellar ordered motions the rotating ISM is less bound (reduction of the "effective" potential)
- ✓ Simulations → shape and rotation are important in determining L_{χ} and T_{χ} .

 Their effect is a function of galactic mass:

in **low** mass ETGs: flattening and rotation **both favor global winds** \Rightarrow large decrease of L_x in **high** mass ETGs: **shape has a minor** impact on L_x (slight decrease) and T_x (<15% variation) **rotation reduces** significantly L_x and T_x

at any fixed $L_B > 3x10^{10} L_{B,\odot}$ ($\sigma_{e8} > 200$ km/s) rotating ETGs are colder and X-ray fainter (the more so the flatter they are, i.e., the more rotating they can be)

rotation is the main driver of X-ray evolution \rightarrow anti-correlations of L_X and T_X with galaxy flattening **is a by-product**.

In progress: black hole feedback, starformation