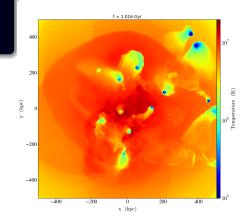
The Dynamical Removal of Gas from Group and Cluster Galaxies


Rukmani Vijayaraghavan

(University of Illinois at Urbana-Champaign)

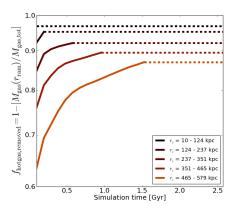
with:

Paul Ricker (UIUC) John ZuHone (NASA GSFC) Jay Gallagher (UW Madison)

July 11th 2014

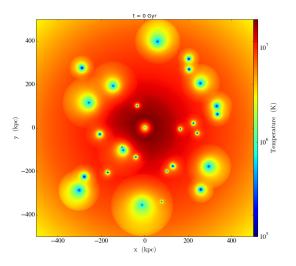
Gas Stripping in Groups and Clusters – Questions

- How do cluster and group and galaxies lose their gas?
 - Tidal vs. Ram-pressure stripping
- How important are group environments? (Pre-processing?)
- What is the time scale over which galaxies lose their hot halos?
- Can X-ray coronae of galaxies survive ram-pressure stripping?
- How can simulations constrain observed galaxy wakes and coronae?

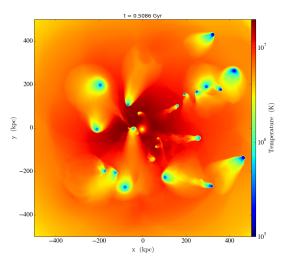


(ESO 137-001; M. Sun et al., Chandra, SOAR)

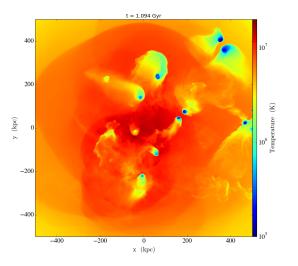
Galaxy Groups and Pre-processing of Galaxies

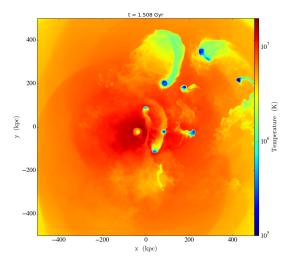

Group-cluster merger simulation, particles tagged with galaxy models

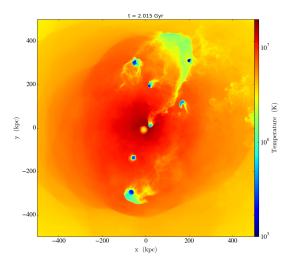
- 'Pre-processing': Transforming galaxies in groups, before eventual cluster infall.
- Group environments can efficiently strip galaxies of their hot coronal and cold disk gas.
- In a $3 \times 10^{13} \rm M_{\odot}$ group, > 85% of galactic hot gas is ram-pressure stripped before it cools.

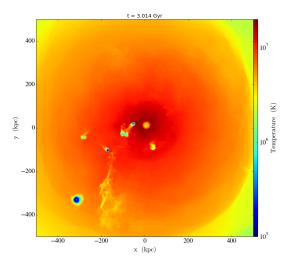


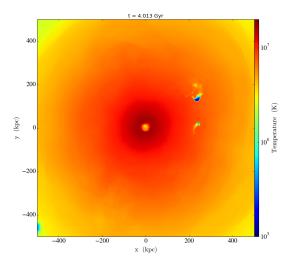
Vijayaraghavan & Ricker 2013

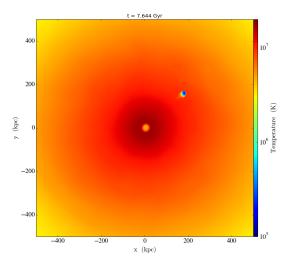

Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc


Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc

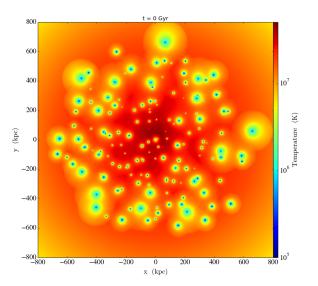

Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc


Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc

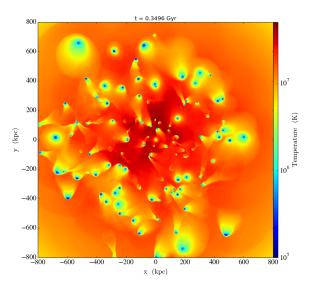

Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc


Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc

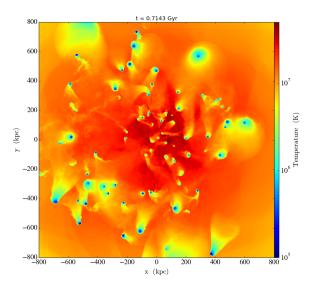
Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc



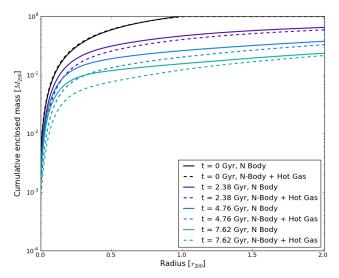
Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc


Idealized Simulations of a $1.2 \times 10^{14} \ \mathrm{M}_{\odot}$ Cluster

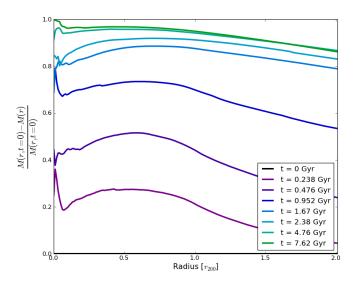
Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc


Idealized Simulations of a $1.2 imes 10^{14}~{ m M}_{\odot}$ Cluster

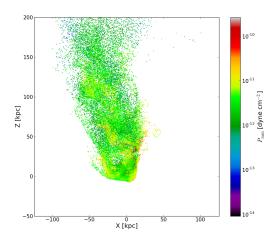
Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc

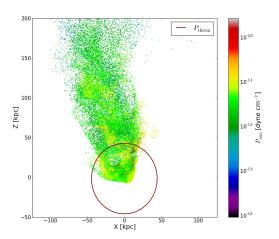

Idealized Simulations of a $1.2 \times 10^{14} \ \mathrm{M}_{\odot}$ Cluster

Collisionless DM + hot gas, FLASH 4 + AMR, particle mass $10^6~{\rm M}_{\odot}$, max. resolution 1.6 kpc

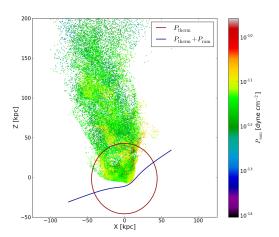


Tidal vs. Ram-Pressure Stripping


Stacked galaxy mass profiles, in simulations with and without gas

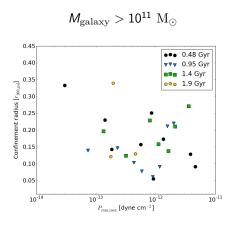

Gas Mass Loss: $\sim 80\%$ gas stripped within 2.4 Gyr Stacked differential gas mass profiles

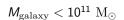
Ram-Pressure Stripping: Confinement Surface



Ram-Pressure Stripping: Confinement Surface

$$P_{\rm therm,galaxy}(\textbf{r}_{\rm conf}) = P_{\rm therm,ICM}(\textbf{r}_{\rm group} + \textbf{r}_{\rm conf})$$

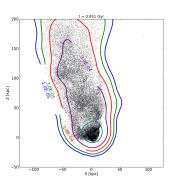

Ram-Pressure Stripping: Confinement Surface

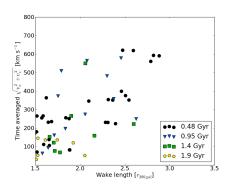


$$\begin{aligned} P_{\mathrm{therm,galaxy}}(\mathbf{r}_{\mathrm{conf}}) &= P_{\mathrm{therm,ICM}}(\mathbf{r}_{\mathrm{group}} + \mathbf{r}_{\mathrm{conf}}) + P_{\mathrm{ram,ICM}}(\mathbf{r}_{\mathrm{group}} + \mathbf{r}_{\mathrm{conf}}) \hat{\mathbf{v}} \cdot \hat{\mathbf{r}} \\ & (P_{\mathrm{ram,ICM}} = \rho_{\mathrm{ICM}} v_{\mathrm{gal}}^2) \end{aligned}$$

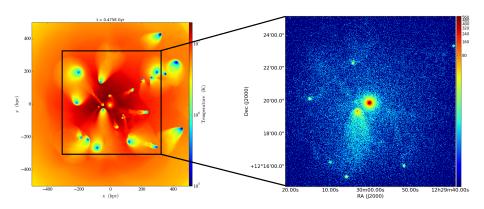
Characterizing Galaxy Wakes

Higher $P_{\mathrm{ram}} \Rightarrow$ smaller confinement surface, particularly for massive galaxies.

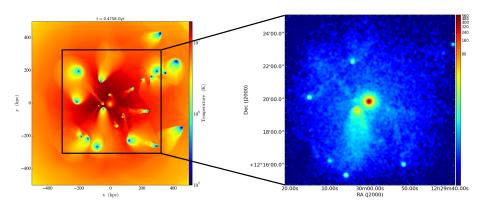


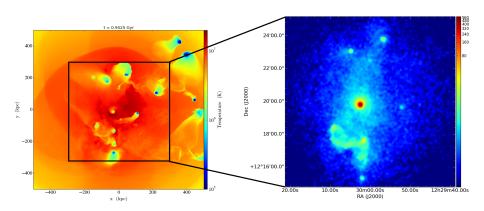


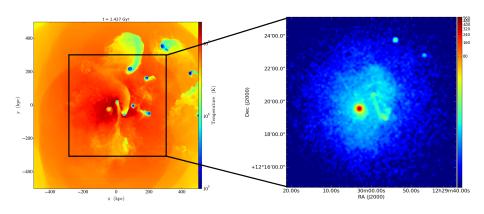
Characterizing Galaxy Wakes


Higher transverse velocities \Rightarrow longer galaxy wakes.

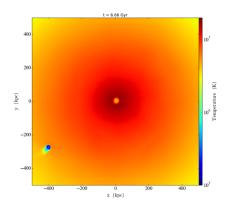
Surface Density Contours

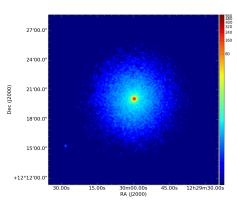



Simulated 400 ks $\it Chandra$ image reblocked by a factor of 4 (t = 0.48 Gyr)

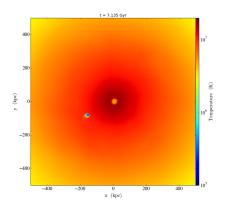

Simulated 400 ks *Chandra* image, smoothed so $\langle N_{\rm photons}/{\rm pixel} \rangle \simeq 5$ (t = 0.48 Gyr)

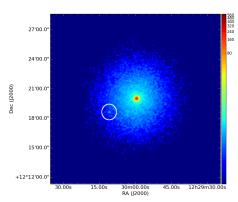
Simulated 400 ks *Chandra* image, smoothed so $\langle N_{\rm photons}/{\rm pixel} \rangle \simeq 5$ (t = 0.95 Gyr)




Simulated 400 ks *Chandra* image, smoothed so $\langle N_{\rm photons}/{\rm pixel} \rangle \simeq 5$ (t = 1.43 Gyr)

Are surviving X-ray coronae visible at \sim 7 Gyr?


Simulated 400 ks *Chandra* image of 500 \times 500 kpc region at 6.66 Gyr, smoothed such that $\langle N_{\rm photons}/{\rm pixel}\rangle \simeq 5$ – visible, but low SNR



Are surviving X-ray coronae visible at \sim 7 Gyr?

Simulated 400 ks *Chandra* image of 500 \times 500 kpc region at 7.13 Gyr, smoothed such that $\langle N_{\rm photons}/{\rm pixel}\rangle \simeq 5$ – visible, but low SNR

Summary

- Groups 'pre-process' galaxies, strip $\sim 85\%$ of their gas within ~ 2 Gyr.
- We have simulated a realistic population of galaxies that are stripped by tidal forces and the ram pressure of the ICM.
- The presence of gas and ram pressure increases the rate of gas loss, as opposed to purely tidal stripping.
- Most galaxies lose all their gas within $\sim 2.5 3.5$ Gyr, some coronae survive up to ~ 7 Gyr.
- Caveat: cooling, gas replenishment, viscosity, and magnetic fields not included.
- Galaxy wakes have well defined 'confinement surfaces', whose radii correlate with the strength of ram pressure.
- Faster moving galaxies have longer wakes.
- Mock X-ray images with YT photon simulator, wakes are visible with long (400 ks) observations. Multiple wakes can be confused as one.
- Surviving coronae are visible at late times, with low SNR ($\simeq 2$).