

ANNOUNCEMENTS

The website for the workshop is http://cxc.harvard.edu/ciao/workshop/sep19/

Quick way to get there...

<u>cxc.harvard.edu</u> —> Data analysis —> Workshops

You can find there

• All the presentations

Introduction

- A workbook with Exercises for the hands-on session
- If you need a certificate of attendance let us know and we can email you one

An Introduction to CIAO

(Chandra Interactive Analysis of Observations)

* Development frozen as of CIAO 4.11 - Moving toward Matplotlib -Conversion guide provided

CIAO: Chandra's data analysis system Fruscione et al. 2006, SPIE Proc. 6270, 62701V, D.R. Silvia & R.E. Doxsey, eds.

What is CIAO?

Why are we all here (on a Saturday and Sunday!)?

First a linguistic note....

CIAO from "s'sciavo", "I am your servant" in Venetian language

And CIAO has been at the service of X-ray astronomers for 20 years!

From: http://cxc.harvard.edu/ciao/ahelp/ciao.html

AHELP for CIAO 4.11

ciao

Context: concept

Synopsis

Chandra Interactive Analysis of Observations

Description

The remarkable science capabilities of the **Chandra X-ray Observatory** demanded **new**, **flexible**, **multi-dimensional**, software to analyze the data it returned. The result is CIAO - the Chandra Interactive Analysis of Observations - a system that has proven itself useful for the analysis of data from other, non-Xray missions, because of the mission independence that is the basis of the CIAO design.

Introduction

Introduction to CIAO Tools

CIAO is a data analysis system

written for the needs of users of the Chandra X-ray Observatory. Because Chandra is the first mission with 4-dimensional data (2 spatial, time, energy) in which each dimension has many independent elements, CIAO was **built to handle Ndimensional data** without concern about which particular axes were being analyzed. Also, **apart from a few Chandra instrument tools, CIAO is mission independent**.

In order to allow users of Chandra data to use pre-existing tools, all CIAO tools read and write several formats, including FITS tables (which includes event files), ASCII formats, and FITS images.

CIAO also needed to be able to **filter down and project the 4-D Chandra** event data to manageable sizes and convenient arrays. This has to be done flexibly, so we have built all CIAO tools to take a **filtering and binning**' specification on the command line, making use of a general purpose **regions**' syntax. See <u>"ahelp dm"</u> for information on the Data Model that makes all this possible.

Since Chandra data can be sliced and diced in so many ways, and because the Chandra calibration is spatially and energy dependent, we needed to **keep track of just how the data had been filtered and binned**, which we do in a `data subspace'. The tools keep track of this subspace automatically and allow users to review previous data processing. See <u>"ahelp subspace"</u>.

The CIAO design allows **close interconnection of tools**. For example, the output of any of the source DETECT programs can be fed into dmextract to create a summed spectrum which can then be fit in Sherpa.

Modeling, Fitting, and Plotting

Introduction

The **modeling and fitting tool Sherpa is central to the CIAO system**. Sherpa performs forward fitting of models to data in N-dimensions. Refer to "ahelp sherpa" and <u>the Sherpa website</u> for complete details.

ChIPS, the CIAO plotting package, can be used during data analysis e.g. to plot a lightcurve - and to create publication-quality figures. ChIPS is designed for use in a variety of modes: as a user-interactive application and in batch mode. The Sherpa application uses ChIPS to display data fits, residuals, and so on. Refer to "ahelp chips" and <u>the ChIPS</u> <u>website</u> for complete details.

Altogether CIAO is a **powerful system for the analysis of all types of** data.

- A collection of Unix command line tools and Python applications
- Shares code with standard Chandra processing pipeline
- Allows Chandra instrument specific data reduction (eg ARF and RMF)
- Tailored to specialized X-ray astronomy data analysis, but not specific to Chandra (as been used with XMM)
- Coded with attention to standards and interoperability so that generic tools can be (and are) used for other X-ray data and even optical and radio data (e.g. multiwavelength analysis)
- Easy for beginners, yet powerful for advanced users
- Linux and Mac, annual releases
- Installed 1500+ times per year (single users to large institutions)

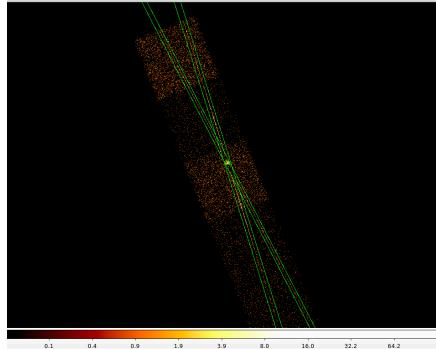
What is CIAO? In practice

General Concepts

- 1. File format
- 2. Parameter Files
- 3. Filtering and Binning (the Data Model)
- 4. Regions
- 5. Subspace
- 6. Good Times Intervals (GTI)
- 7. Scripting language (Python)

Introduction

1. File Format


- Chandra data is stored in the (binary) FITS format however simple
 ASCII (text) files can be handled by many tools and applications.
- When CIAO operates on data it stores processing state and processing information along with the data (keywords, subspace).
- A single Chandra file can contain **multiple** "datasets" (e.g. data, Good Time Intervals, weight map, regions) which are **stored in** "**blocks**".
- Blocks can contain image or table data.
- dmlist (a command line tool) or prism (a GUI) are available to view file contents.

Antonella Fruscione 11

PRISM: file viewer, editor, tool launcher, quick plots header blocks X prism <u>H</u>elp File Edit View Analysis grating_reg.fits acisf00459N004_evt2.fits Header Keywords Extension Type Dimensions Add Delete PRIMARY image NUL Value Name 2 cols, 2 rows GTI7 table COMMENT ----+ GT I5 table 2 cols, 1 row COMMENT AXAF FITS File GTI6 table cols, 3 rows COMMENT GT I8 2 cols, 3 rows table COMMENT table 2 cols, 4 rows COMMENT This file is written following certain AXAF-ASC < > REGION table 8 cols, 3 rows COMMENT conventions which are documented in ASC-FITS-2.0 < COMMENT • **EVENTS** rows: (1-100)/539380 page: 1/5394 Edit Select Plot T Histogram ka (a) 💫 🔶 斜 Image tdet(tdety) time expno rd(tg_r) rd(tg_d) chip(chipx) chip(chipy) tdet(tdetx) det(detx) units deg deg pixel pixel pixel pixel pixel 1 63875939.553 841 159 4758 1861 4719.02 nan nan 2 63875939.553 572 239 4489 1941 4450.18 nan nan 3 63875939.553 144 288 4061 1990 4022.52 nan nan 4 63875939.553 nan nan 752 293 4669 1995 4629.72 5 63875939.553 0 0 222 2071 4100.19 369 4139 6 0 243 63875939.553 0 371 4160 2073 4121.73 • • Sun 22-Oct 13:58:57 Loaded file /Users/antonella/Desktop/459/primary/grating_reg.fits Sun 22-Oct 13:58:57 Adding new tab to display Sun 22-Oct 13:50:33 Loaded file /Users/antonella/Desktop/459/primary/acisf00459N004_evt2.fits.gz Sun 22-Oct 13:50:33 Adding new tab to display Sun 22-Oct 13:49:58 Added curve of /Users/antonella/Desktop/459/primary/pcadf063874624N003_asol1.fits[ASPSOL][cols time, a] to chij Sun 22-Oct 13:49:54 Added curve of /Users/antonella/Desktop/459/primary/pcadf063874624N003_asol1.fits[ASPSOL][cols time, a] to chij 4 Þ data

	imensions	Header K	eywords						
RIMARY image N	image NULL		Add Delete						
VENTS table 2	1 cols, 539380 row	s Name	Value						-
TI7 table 2	cols, 2 rows	COMME	NT This Fl	ITS file may	contain long stri	na keyword y	alues that are		
TI5 table 2	cols, 1 row	COMME			tiple keywords.				
TI6 table 2	cols, 3 rows	COMME			d of each subst				
iTI8 table 2	cols, 3 rows	COMME			d which has the				
iTI9 table 2	cols, 4 rows	ORIGIN	ASC						
		CREATO	R tg_creat	te_mask - Ve	rsion DS 8.0				
		ASCDSV	ER 8.1.2	-					-
		1						•	-
REGION	ows: (1-3)/3	page: 1/1							
Edit Select		istogram 🔻	Image 🔻	Info			ka	4000	2
SOU	RCE SHAPE	SKY(X)	SKY(Y)	B[]	ROTANG	GRATING	TG_PART	COMPONEN	-
units		pixel	pixel	pixel	dea				
1 1	circle	4122.23	4071.31	B[0:1]	0	heta	0	1	
2 1	rotbox	4108.47	4097.97	B[0:1]	117.282	hetg	1	2	
3 1	rotbox	4113.29	4099.95	B(0:11	107.322	heta	2	3	
3 1									

Introduction

2. Parameter Files

From: http://cxc.harvard.edu/ciao/ahelp/parameter.html

- The CIAO tools use ASCII parameter files to get and store processing parameters (eg dmcopy.par, specextract.par)
- The interface is similar to the IRAF and FTOOLS systems

CAVEAT: We recommend that you start FTOOLS before CIAO to minimize conflicts (see http://cxc.harvard.edu/ciao/threads/ciao_startup/index.html#ftools)

- Parameters can be set via:
 - a number of routines (eg punlearn, pset, plist)
 - a "Parameter Editor GUI" (peg) (see ahelp peg)
 - the Python interface to the CXC parameter system (see ahelp paramio)
- Multiple values can be specified for a parameter if is listed in the help file as accepting stacks (see help stack)

Parameter file example

antonella% plist dmcopy

Parameters for /Users/antonella/cxcds_param4/dmcopy.par

```
infile = acisf00459N004_evt2.fits.gz[REGION] Input dataset/block specification
outfile = grating_reg.fits Output dataset name
(kernel = default) Output file format type
(option = ) Option - force output type
(verbose = 0) Debug Level
(clobber = no) Clobber existing file
  (mode = gl)
```

antonella% dmcopy
Input dataset/block specification (acisf00459N004_evt2.fits.gz[REGION]):
Output dataset name (grating_reg.fits):
Clobber set to no, and output file grating_reg.fits exists.

```
antonella% pset dmcopy outfile=grating_reg2.fits
antonella% dmcopy
```

Input dataset/block specification (acisf00459N004_evt2.fits.gz[REGION]):
Output dataset name (grating_reg2.fits):

antonella%

Note required (infile, opt) and optional parameters (the ones in parenthesis)

3. Filtering and Binning (the "Data Model")

http://cxc.harvard.edu/ciao/ahelp/dm.html http://cxc.harvard.edu/ciao/ahelp/dmfiltering.html http://cxc.harvard.edu/ciao/ahelp/dmbinning.html http://cxc.harvard.edu/ciao/threads/filter/

- Filtering (or the removal of unwanted events) is an essential part of X-ray analysis e.g. to remove periods of high background or poor aspect solution, exclude uninteresting sources from an image etc.
- Binning is the action on event files which creates histograms, images, or 3D data cubes. It is useful for visualizing and manipulating data
- The "CIAO Data Model" (DM) is the versatile interface used by CIAO to examine and manipulate standard format datafiles (e.g. FITS, ASCII).
- The DM enables powerful filtering and binning
- The name "Data Model" reflects the fact that the interface can be used on data files of different format (all described by a single abstract description the same "model") in a transparent way.

More About the Data Model

- An important characteristic of the DM is that any program that asks for a data file name as input accepts a *"virtual file"* string which causes the program to see a filtered version of the file in question without the need to physically create a file on disk
- The "virtual file" syntax is also commonly used to create a filtered version of the input file on disk
- Another important characteristic of the DM is that **all columns of event lists are treated "equally**": for example binning is allowed not only in spatial coordinates but also in e.g. time, or energy coordinate, giving the ability of creating multidimensional images in space-energy, or spacetime, etc.

Data Model Syntax (ahelp dmsyntax)

- All CIAO tools use the DM library and therefore accept as input "virtual files" described using the DM syntax.
- In the DM context a "virtual file" in represented by a filename followed by a series of optional qualifiers in square brackets []:

"filename[block][filter][columns/binning][options][rename]"

where:

block - is the "section" of the file to use **filter-** is the filter to be applied

columns/binning - specifies **either the columns** from a table to be included in an output table **or the binning**. When binning the data to generate an n-dimensional image, the range and binsize (min:max:bin) must be specified.

options - a sequence describing special options for the DM library

rename - specifies a name for the new block

- the order of the qualifiers generally matters, however...
- not all qualifiers need to be present always

CIAC Introduction

Simple examples of "virtual files"

• A file which contains the first three columns of the EVENTS block specified by number:

(a) acisf01843N001_evt2.fits[EVENTS][time=84245787:84247000][cols #1,#2,#3]

• A file which contains the first three columns of the EVENTS block specified by name:

(b) acisf01843N001_evt2.fits[EVENTS][grade=0,2,3][cols time,ccd_id,node_id]

after the events are filtered in time or in grade

In the example above:

```
block: [EVENTS]
filter: [time=84245787:84247000] (a)
[grade=0,2,3] (b)
```

columns/binning:

```
[cols #1,#2,#3] (a)
[cols time,ccd_id,node_id] (b)
```

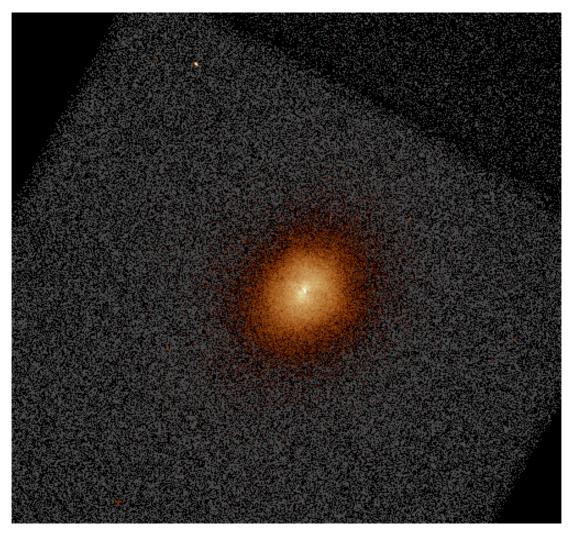

 An event file binned on the column called "PI" (to create a "PI spectrum") for a specified region

acisf01843N001_evt2.fits[EVENTS][sky=region(mysrc.reg)][bin pi=1:1024:1]

(typical input to the tool dmextract)

• or binned in x,y coordinates to create an image

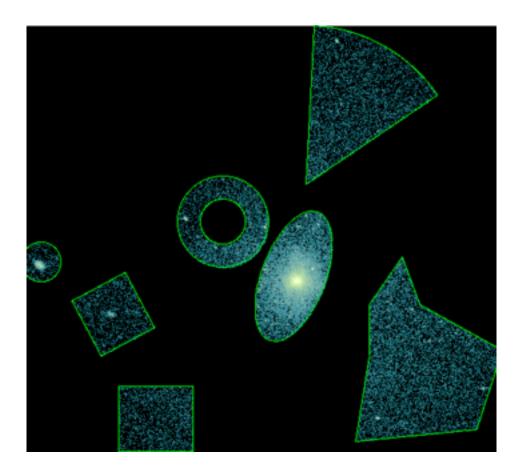
acisf01843N001_evt2.fits[EVENTS][energy<7000][bin x=320:480:4,y=320:480:4]


(typical input to the tool dmcopy)

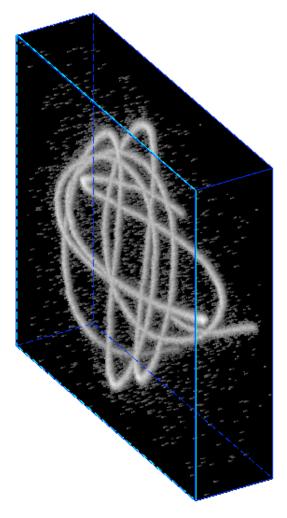
In the example above:

```
block: [EVENTS]
filter: [sky=region(mysource.reg)]
    [energy<7000]
columns/binning:
    [bin pi=1:1024:1]
    [bin x=320:480:4,y=320:480:4]</pre>
```


<u>dmcopy</u> "acisf06934N002_evt2.fits[bin x=3500:4500:2,y=3500:4500:2]" 6934_sky_binsize.fits



CIAO workshop at X-Ray Astronomy 2019 - Bologna


dmcopy "ngc1404.img[sky=region(ngc1404_sample.reg)]" ngc1404_regfile.img clob+

<u>dmcopy</u> "06540_evt.fits[(chipx,chipy)=box(8003.5,8137.5,512,512,0)] [bin chipx=::2,chipy=::2,time=::#50]" outfile=cube.fits

This example shows a 3D image (cube) of a point source shown in chip coordinates. Since Chandra dithers during the observation, the point source moves across the detector versus time, which is the 3rd dimension.

Here an HRC event file is filtered on the chip coordinates and then binned into a cube. The X and Y axes are the chipx and chipy values binned by 2, and the third axis is time binned into 50 bins.

Data Manipulation Tools

The four DM "core" tools

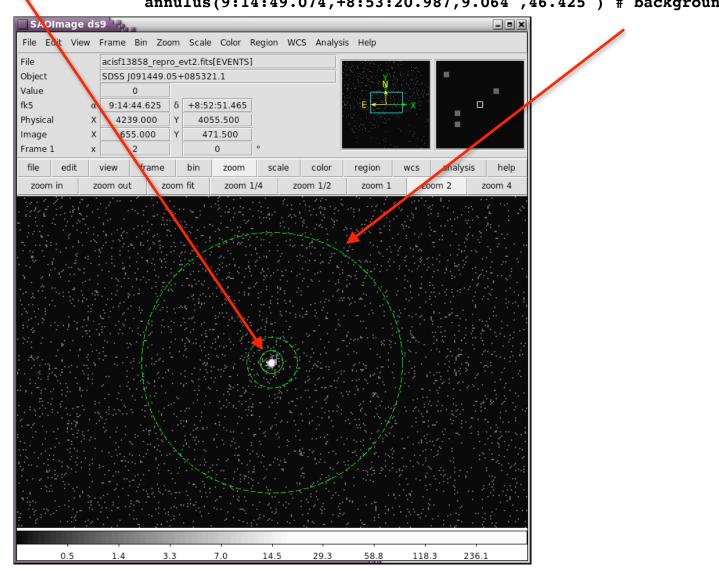
dmlist: list contents or structure of a file

dmcopy: filter and bin tables and images

dmextract: make a histogram table file (e.g. PHA file, lightcurve file) from a table column. Generate count histogram on supplied regions for a spatial table or image file.

dmstat: compute statistics for images and columns in tables

30+ data manipulation tools are included in CIAO

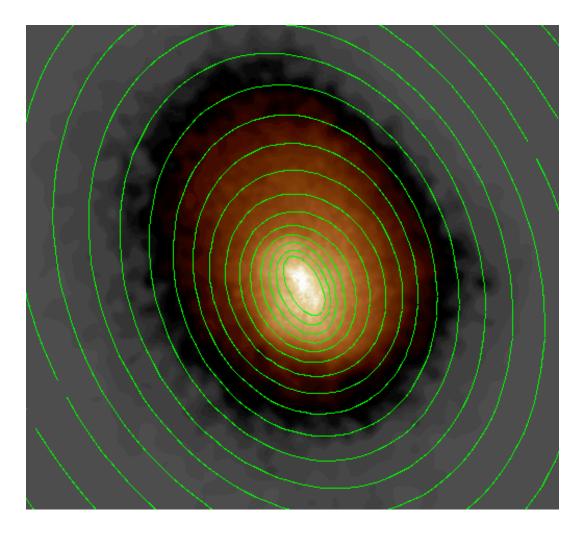


http://cxc.harvard.edu/ciao/ahelp/dmregions.html http://cxc.harvard.edu/ciao/threads/regions/

- Regions are two dimensional filters commonly used in CIAO data analysis to to include and/or exclude data
- For example regions are used to define the source and background areas in an image.
- They are text files or FITS files that can be created manually or within ds9, and can be used as a filter (e.g. "[sky=region(source.reg)]")
- Regions can be combined using boolean AND (intersection) or boolean OR (union) operations.

Introduction

circle(9:14:49.090,+8:53:21.231,4.083")



annulus(9:14:49.074,+8:53:20.987,9.064",46.425") # background

CIAO workshop at X-Ray Astronomy 2019 - Bologna

dmellipse a1664.asm a1664.ellipses "lgrid(0.1:0.96:0.05)" step=100 clob+

5. Subspace

From: http://cxc.harvard.edu/ciao/ahelp/subspace.html

- Subspace records the filters applied to a file
- Having this recorded in a data file header allows subsequent tools to extract appropriate calibration information. dmlist can read this history using opt=subspace

dmlist "acisf13736_evt2.fits[ccd_id=3,sky=circle(4324,3676,50)"] subspace

dmlist "acisf13736_evt2.fits[ccd_id=3,sky=circle(4324,3676,50)"] subspace

Data subspace for block EVENTS: Components: 1 Descriptors: 16

--- Component 1 ---1 time Real8 TABLE GTI3 444947637.1627430916:444970563.5344673395 [...] 3 ccd id Int2 3:3 4 node id Int2 0:3 [1] chipx 5 chip 1:1024 [2] chipy 5 chip 1:1024 [1] tdetx 6 tdet 1:8192 6 tdet [2] tdety 1:8192 [1] detx 7 det 0.50: 8192.50 7 det [2] dety 0.50: 8192.50 Circle(4324,3676,50) 8 sky Real4 Field area = 6.71089e+07 Region area = 7853.98 8 sky Real4 8 sky [1] x 4274.0: 4374.0 8 sky [2] y 3626.0: 3726.0 9 phas Int2 -4096:409510 pha Int4 0:36855 11 pha ro Int4 0:36855 12 energy Real4 0: 1000000.0 13 pi Int4 1:1024 14 fltgrade Int2 0:255 15 grade Int2 0:0,2:2,3:3,4:4,6:6

6. Good Time Intervals

http://cxc.harvard.edu/ciao/ahelp/times.html http://cxc.harvard.edu/ciao/dictionary/gti.html http://cxc.harvard.edu/ciao/ahelp/dmgti.html

- In a Chandra event file several 'times' are recorded both in the header via keywords [eg TSTART, TSTOP, EXPTIME etc.] and in one or several Good Time Intervals auxiliary files (the GTI blocks).
- GTIs are used to define what times periods of the observation can be used (i.e. contain valid data)
- The **dmgti** tool creates a Good Time Interval (GTI) filter file which represents the times of rows in the input file which pass the user-supplied constraints. As an example, the tool can be used to find out those times when the RATE column of a lightcurve lies below a set limit

CIAO

Introduction

7. Python: the scripting language in CIAO

- The scripting (or interpreted = no compilation is necessary) language supported in CIAO via Sherpa and ChIPS is Python (Python 3.5 as of CIAO 4.11)
- The software package is distributed with CIAO, but users may opt to run their own custom installation instead
- The <u>CRATES</u> and <u>TRANSFORMS</u> libraries provide access to the CIAO Data Model library and a high-level interface for performing World Coordinate System transformations.
- Access to CIAO's plotting and modeling packages is available through the <u>ChIPS</u> and <u>Sherpa</u> modules. Sherpa and ChIPS are importable modules for Python
- You DO NOT need to know Python to use Sherpa and Chips, but IF YOU DO, you will be able to use its capabilities in your analysis

Have fun using CIAO!