Apply/Remove ACIS PHA Randomization

CIAO 3.4 Science Threads

Table of Contents

- <u>Background Information</u>
- <u>Get Started</u>
 - ◆ <u>Related acis</u> process events threads
- Generate A New Level=1 Event File
 - Determine the eventdef parameter
 - <u>Run acis process events</u>
- <u>Summary</u>
- Parameter files:
 - ♦ <u>acis process events</u>
- <u>History</u>

Apply/Remove ACIS PHA Randomization

CIAO 3.4 Science Threads

Overview

Last Update: 21 May 2007 - need to set stop=none if aspect solution is not provided

Synopsis:

For some observations, the way PHA channels are converted to PI channels will cause an aliasing problem in the final binned spectra. Randomizing the PHA distribution alleviates this effects; see the <u>Background</u> <u>Information</u> section for details. Similarly, one could *remove* the randomization from a file that has already had it applied. Since half an ADU is *much* smaller than the energy resolution at all energies, disabling the PHA randomization should not significantly affect CCD spectra.

Purpose:

To generate a new level=2 event file with PHA randomization applied (or removed). *Removing the PHA randomization should only be done by advanced users who know exactly what they are doing.*

Read this thread if:

you are working with an ACIS observation and would like to apply or remove the randomization.

Related Links:

- Analysis Guide: <u>ACIS Data Preparation</u>
- <u>Apply the ACIS CTI Correction</u> thread: it is strongly recommended that you reprocess imaging data with this new calibration which became part of <u>standard data processing</u> in DS 6.11. Note that the CTI correction is on by default (apply_cti=yes) in the acis_process_events.

Proceed to the <u>HTML</u> or hardcopy (PDF: <u>A4 / letter</u>) version of the thread.

Background Information

For some observations, the way PHA channels are converted to PI channels will cause an aliasing problem in the final binned spectra. Since PHA is in discrete integer values, a single value of PHA corresponds to a single energy and therefore a single PI value for a given 32x32 pixel region in the gainmap file. Although it varies, a difference of one PHA bin corresponds to ~4 eV in energy space. Therefore, in the case of a sufficiently strong source in a small spatial region, the spectrum in energy will show a series of spikes and zeros. Since

PI = 1 + (energy / 14.6)

the PI spectrum will also show a strange series of jumps. This problem primarily affects sources with a large

number of counts; randomizing the PHA distribution alleviates this effects. PHA randomization became part of standard data processing with ASCDS version DS 6.1 (02 July 2001).

Get Started

Sample ObsID used: 1838 (ACIS-S, G21.5-09)

File types needed: evt1; flt1; bpix1

If you created a new bad pixel file by running the <u>Create a New ACIS Bad Pixel File: Identify ACIS Hot</u> <u>Pixels and Cosmic Ray Afterglows thread</u>, use that file in this analysis. Otherwise, use the bpix1.fits file from the Archive.

Check the ASCDSVER keyword in the header, as explained in the Background Information section :

unix% <u>dmkeypar</u> acisf01838_000N001_evt1.fits ASCDSVER echo+ R4CU5UPD8.2

Since this data was processed with an ASCDSVER lower than DS 6.1, we need to complete this thread in its entirety in order to randomize the PHA channels.

Related acis_process_events threads

There are other threads that should be considered, since they may affect how acis_process_events is run. The <u>Create a New Level=2 Event File thread</u> shows how to combine all of these options into a single run of acis_process_events.

- Apply an ACIS Gain Map
- Apply the Time-Dependent ACIS Gain Correction
- <u>Remove Pixel Randomization</u>
- <u>Apply the ACIS CTI Correction</u>

Generate A New Level=1 Event File

Determine the eventdef parameter

The <u>eventdef</u> parameter specifies the names and data types of the columns in the output event data file. Four predefined strings are included in the parameter file for acis_process_events:

READMODE	DATAMODE	event mode	eventdef string
TIMED	(V)FAINT	timed exposure (very) faint	stdlev1
TIMED	GRADED	timed exposure graded	grdlev1
CONTINUOUS	CC(33)_FAINT	continuous clocking (3x3) faint	cclev1
CONTINUOUS	CC(33)_GRADED	continuous clocking (3x3) graded	ccgrdlev1

If you are unsure of the event mode of your observation, the information can be found in the READMODE and DATAMODE values stored in the file header:

```
unix% <u>dmkeypar</u> acisf01838_000N001_evt1.fits READMODE echo+
TIMED
unix% dmkeypar acisf01838_000N001_evt1.fits DATAMODE echo+
FAINT
```

This is a timed exposure faint observation, so the proper eventdef parameter is "stdlev1." The full parameter syntax of each eventdef string may be found in <u>plist acis process events</u>.

Run acis_process_events

Running this tool with the <u>SDP</u> level=1 event file as the input will produce a *new* level=1 event file that has the latest CALDB applied, meaning that the newest gain map will be picked up. Since the <u>CTI</u> and <u>Time–Dependent Gain</u> corrections are on by default, they will both be applied (when possible).

There is only one parameter, <u>rand pha</u>, that needs to be set specifically for this thread. In this example, we are applying the randomization, but using rand_pha=no will equivalently remove it if it had already been applied.

```
unix% punlearn acis process events
unix% pset acis_process_events infile=acisf01838_000N001_evt1.fits
unix% pset acis_process_events outfile=acis_1838_new_evt1.fits
unix% pset acis_process_events badpixfile=acis_1838_new_bpix1.fits
unix% pset acis_process_events eventdef=")stdlev1"
unix% pset acis_process_events stop=none
unix% pset acis_process_events rand_pha=yes
unix% acis_process_events
Input event file or stack (acisf01838_000N001_evt1.fits):
Output event file name (acis_1838_new_evt1.fits):
aspect offset file ( NONE | none | <filename>) (NONE):
```

It is important to note the unusual syntax of the eventdef parameter; the tool will not access the predefined string if the leading ")" is missing (see <u>example 6</u> of ahelp parameter).

The content of the parameter file may be checked using plist acis process events.

You may see a warning about the number of event islands that contain one or more bad pixels:

```
# acis_process_events (CIAO 3.4): The following error occurred 26941
times: dsAFEBADPCNTERR -- WARNING: Event island contains 1 or more bad pixels.
```

It is explained in this FAQ and may be ignored.

Summary

This thread is now complete; the new level=1 event file is named acis_1838_new_evt1.fits. See the <u>final section</u> of the ACIS Gain Map thread to generate a new level=2 event file.

Apply/Remove ACIS PHA Randomization - CIAO 3.4

Parameters for /home/username/cxcds_param/acis_process_events.par

```
#
#
#
    acis_process_events.par- Parameter file for acis_process_events program
#
#-
    _____
              infile = acisf01838_000N001_evt1.fits Input event file or stack
            outfile = acis_1838_new_evt1.fits Output event file name
                                                               aspect offset file ( NONE | none | <filename>)
       acaofffile = NONE
       (apply_cti = yes)
                                                              Apply CTI adjustment?
                                                             Apply time-dependent gain adjustment?
    (apply_tgain = yes)
(alignmentfile = )acaofffile -> NONE) sim/fam alignment file ( NONE | none | <filename>)
           (obsfile = NONE) obs.par file for output file keywords ( NONE | none | <filename>)
           (qeompar = qeom)
                                                            Parameter file for Pixlib Geometry files
       (logfile = stdout)debug log file ( STDOUT | stdout | <filename>)(gradefile = CALDB)grade mapping file ( NONE | none | CALDB | <filename>)(gainfile = CALDB)acis gain file ( NONE | none | CALDB | <filename>)
      (badpixfile = acis_1838_new_bpix1.fits) acis bad pixel file ( NONE | none | <filename>)

      (threshfile = CALDB)
      split threshold file ( NONE | none | CALDB | <filename>)

      (ctifile = CALDB)
      acis CTI file ( NONE | none | CALDB | <filename>)

      (tgainfile = CALDB)
      gain adjustment file ( NONE | none | CALDB | <filename>)

                                                              gain adjustment file ( NONE | none | CALDB | <filename>)
       (tgainfile = CALDB)
         (eventdef = )stdlev1 -> {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,s:phas,l:pha,
f:energy,l:pi,s:fltgrade,s:grade,x:status}) output format definition
     (doevtgrade = yes)
                                                             Determine event flight grade?
  (check_vf_pha = no)
                                                              Check very faint pixels?
                                                            Estimate the times of arrival for CC-mode observation?
(calc_cc_times = no)
              (trail = 0.027)
                                                            Trail fraction
                                                           Default split threshold level (overridden by values in threshfile)
         (spthresh = 13)
   (time_offset = 0)
                                                           Offset to add to event time field to synch w/ fam data
     (docentroid = no)
                                                           Determine pixel centroid for coord. conversion?
                                                    perform pha->pi conversion? (requires gain file)
Width of Pi bin in eV
Number of values to bin energy into
  (calculate_pi = yes)
  (pi_bin_width = 14.6)
    (pi_num_bins = 1024)
  (max_cti_iter = 15)
                                                              Maximum iterations for the CTI adjustment of each event
  (cti_converge = 0.1)
                                                              The convergence criterion for each CTI-adjusted pixel in adu
            converge = 0.1)The convergence criterion for each CTL-adjusted<br/>header key containing start/default time value<br/>header key containing time of last event(tstop = TSTOP)header key containing time of last eventclobber = no)Overwrite output event file if it already exis
           (clobber = no)
                                                              Overwrite output event file if it already exists?
                                                             level of debug detail (0=none, 5=most)
           (verbose = 0)
                                             end transformations at [chip,tdet,det,tan,sky,none]
axaf instrument- used for instrument parameter file
random seed (for pixlib), 0 = use time dependent seed
Randomize the pha value used in gain calculations
pixel randomization width (-size..+size) 0=no randomiz
                (stop = none)
         (instrume = acis)
       (rand\_seed = 1)
         (rand_pha = yes)
(rand_pix_size = 0.5)
                                                              pixel randomization width (-size..+size) 0=no randomization
           (stdlev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,s:phas,l:pha,l:pha_ro,f:explored and the state of 
l:pi,s:fltgrade,s:grade,x:status}) TE faint modes event definition string
           (grdlev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,l:pha,l:pha_ro,s:corn_pha
l:pi,s:fltgrade,s:grade,x:status}) TE graded event format definition string
            (cclev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,f:sky_ld,s:pha,l:pha,l:pha
f:energy,l:pi,s:fltgrade,s:grade,x:status}) CC faint event format definition string
       (ccgrdlev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,f:sky_ld,l:pha,l:pha_ro,s
f:energy,l:pi,s:fltgrade,s:grade,x:status}) cc graded event format definition string
                (mode = ql)
```

History

- 16 Dec 2004 updated for CIAO 3.2: use ACIS bad pixel file (badpixfile parameter); removed reference to running on a level=2 event file
- 01 Feb 2005 added note about "Event island contains 1 or more bad pixels" warning

Apply/Remove ACIS PHA Randomization - CIAO 3.4

- 20 Jun 2005 CIAO 3.2.2 patch: minor acis_process_events parameter change (default value of <u>threshfile</u> is CALDB instead of NONE)
- 09 Dec 2005 updated for CIAO 3.3: output filenames include ObsID
- 01 Dec 2006 reviewed for CIAO 3.4: no changes
- 21 May 2007 need to set stop=none if aspect solution is not provided

URL: http://cxc.harvard.edu/ciao/threads/acispharand/

Last modified: 21 May 2007