Analysis of Extended Sources

John C. Houck
houck@space.mit.edu

```
File Edit View History Bookmarks Tools Help
* - < < < \ \ttp://cxc.harvard.edu/ciao/guides/esa.html
* Analysis Guide: Extended ... |$
Chandra X-ray [exc Home Proposer Arctive] Data Anavysis
Observatory >0!
Last modified: 19 January 2010
                            Search the CIAO website or contact the CXC HelpDesk
Analysis Guide: Extended Sources
```


Analysis Guide Inder

```
Scientific analysis of even X-ray point sources can be a complicated process. This situation is exacerbated for extended sources, such as clusters of galaxies or supernova remnants, due to spatial variations in the detector properties. We loosely define an extended source as any object larger than several times the telescope point spread function and/or analysis tasks for extended sources are not required for point source analysis. In this guide, we provide threads f
several
Before analyzing any data, make sure that it has been processed with the latest calibration. There are also some filtering choices that should be considered. Both of these topics are outlined in the ACIS Data Preparation analysis guide
The following threads are referenced
- The ACIS "Blank-Sky" Background Files (S-Lang or Python)
- Detecting Sources - Overview
- Detecting Sources - Using wavdetect
- Single Chip ACIS Exposure Map
- Calculating Spectral Weights (S-Lang or Python)
- Obtain and Fit a Radial Profile (S-Lang or Python
- Using specetract to Extract ACIS Spectra and Response Files for Extended Sources
- Weighting ARFs and RMFs: multaple sources Sherpa: Fitting FITS Image Data (SLLang or Python)
- Sherpa: Using an Exposure Map in Fitting Image Data (S-Lang or Python)
- An Image of Diffuse Emission
```

Threa
Done

Web Documentation

http://cxc.harvard.edu/ciao/guides/esa.html

- ACIS blank-sky background
- Point-source detection
- Exposure maps
- Weighted responses
- Radial profiles
- Image fitting

Important Issues

1. Background

- remove background flares, point-sources
- consider local background measurement vs. ACIS blank-sky

2. Position-dependent response

- usually extract PI spectra, not PHA
- consider weighted responses

Exclude high background intervals:

- extract light-curve [dmextract]
- determine GTIs [lc_sigma_clip()]
- filter [dmcopy]

$$
\begin{gathered}
\text { dmcopy "evt2.fits[@lc_dmgti.gti]" } \\
\text { evt2_clean.fits }
\end{gathered}
$$

CXC

Filtered Counts Image

Counts

- reprocess [acis_process_events]
- apply custom filters (flares, bad pixels, ...) [dmcopy]
- remove point sources [wavdetect]

Remember... $\begin{gathered}\text { Counts and photons are } \\ \text { not the same! } \\ (Q E<1)\end{gathered}$

CXC

Flux Images

(For details, see Davis, 2001, ApJ, 548, 1010)

When mirror area \& PSF vary slowly with position,

$$
C(h, \hat{\mathbf{p}})=\tau_{\mathrm{eff}} \int d E \mathcal{A}(h, E, \hat{\mathbf{p}}) \mathcal{S}_{\mathrm{PSF}}(E, \hat{\mathbf{p}})
$$

If $\mathcal{A} \approx$ constant within ΔE then, summing over $\Delta h, \Delta E$:

$$
" F l u x " \equiv \int_{\Delta E} d E \mathcal{S}_{\mathrm{PSF}}(E, \hat{\mathbf{p}}) \approx \frac{1}{\tau_{\mathrm{eff}}} \frac{C(\Delta h, \hat{\mathbf{p}})}{\mathcal{A}(\Delta h, \Delta E, \hat{\mathbf{p}})}
$$

$\mathcal{A}(\Delta h, \Delta E, \hat{\mathbf{p}})$ is the exposure map.

Instrument Map

Spectrum-Weighted Instrument Map

Approximating the effective area, $A(E)$, as piecewise constant,

$$
C(h)=\tau \sum_{k} \int_{\Delta E_{k}} A(E) s(E) d E \approx\left(\tau \sum_{k} A_{k} w_{k}\right) \int_{E_{\min }}^{E_{\max }} s(E) d E
$$

using weights defined by: $w_{k} \equiv \frac{1}{s_{\text {tot }}} \int_{\Delta E_{k}} s(E) d E$ where $1=\sum_{k} w_{k}$.

Exposure $\operatorname{Map} \mathcal{A}(\Delta h, \Delta E, \hat{\mathbf{p}})$:

- mkexpmap projects the instrument maps onto the sky and includes dither.

CXC
'Flux"

- extract counts image for ΔE of interest [dmcopy]
- Divide counts by exposure map:

$$
\begin{aligned}
& \qquad \mathcal{F}(\Delta E, \hat{\mathbf{p}})=\frac{C(\Delta h, \hat{\mathbf{p}})}{\tau_{\mathrm{eff}} \mathcal{A}(\Delta h, \Delta E, \hat{\mathbf{p}})} \\
& \text { [photons s}{ }^{-1} \mathrm{~cm}^{-2} \text {] } \\
& \text { [dmimgthresh, dmimgcalc] }
\end{aligned}
$$

Surface Brightness Profiles

Elliptical Annuli

In $i^{\text {th }}$ elliptical annulus, compute the surface brightness,

$$
S_{i}=\frac{\sum_{k \in i} C_{k}}{\tau_{\text {eff }} \sum_{k \in i} \mathcal{A}_{k}} .
$$

"Flux"

Overlay Radio Contours

[ds9]

- generate \& save radio contours (RA, DEC)
- load contours \& overlay on X-ray image
- Alternatively, use images as RGB components.

Spectral Analysis

- choose sky region, Ω
- extract source PI spectrum, $C_{\Omega}(h)$ [dmextract]
- compute $A R F, A_{\Omega}(E)$ [mkarf/mkwarf]
- compute $R M F, R_{\Omega}(h, E)$ [mkacisrmf]
- extract background PI spectrum, $B(h)$ (local vs. ACIS blank-sky background)
- Fit model $S_{\Omega}(E) \rightarrow \min \left(\chi^{2}\right)$

Response Spatial Variation

Extract spectrum, $C_{\Omega}(h)$, from sky region, Ω, that spans several calibrated detector regions, $\{\sigma\}$.

Problem: Define $R_{\Omega}(h, E)$ and $A_{\Omega}(E)$ so that $C_{\Omega}(h)=B(h)+\tau_{\text {eff }} \int d E R_{\Omega}(h, E) A_{\Omega}(E) S_{\Omega}(E)$

Response Spatial Variation

CTI (ACIS-3 FI-RMF)

Weighted Responses

$R_{\Omega}(h, E)$ and $A_{\Omega}(E)$ can be defined in terms of a weight map (WMAP).

1. obtain WMAP e.g. from dmextract
2. weighted $R M F$ from mkacisrmf
3. weighted ARF from mkwarf

Default WMAP does not account for bad pixels:

obsid 5827, ACIS-3, box $(3514,4214,2,2,128)$, fracexpo=0.892

