Chandra's PSF: Use it Wisely

Diab Jerius

Smithsonian Astrophysical Observatory

2017 Pune CIAO Workshop

3

イロト イポト イヨト イヨト

Outline

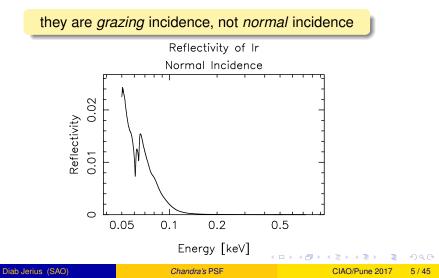
All you need to know Wolter–I Optics Energy Response Focal Surface 1D 2D Stability ACIS HRC-I

All you need to know

All you need to know (almost...)

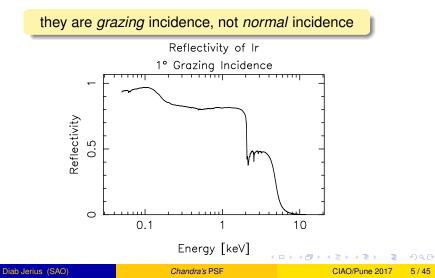
The best Astrophysical X-ray mirrors ever made 1" resolution

3

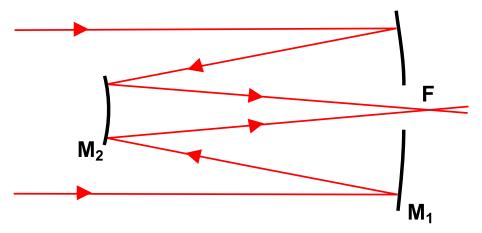

イロト イポト イヨト イヨト

Outline

Grazing vs. Normal Incidence Optics


X-ray optics are unlike most visible optics systems -

Wolter-I Optics

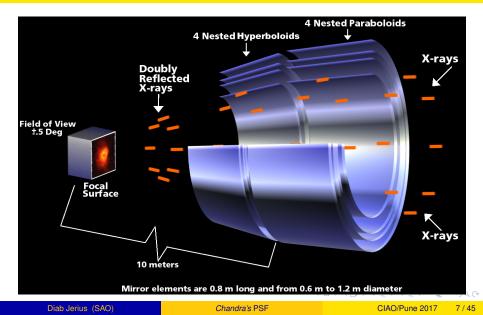

Grazing vs. Normal Incidence Optics

X-ray optics are unlike most visible optics systems -

Wolter-I Optics

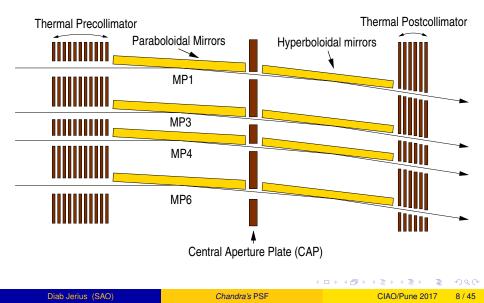
Normal Incidence

Ritchey-Chrétien


http://commons.wikimedia.org/wiki/File:Diagram_Reflector_RitcheyChretien.svg

Diab Jerius (SAO)

Chandra's PSF


э

Grazing Incidence (Wolter-I)

Wolter-I Optics

Grazing Incidence, A schematic view

Peculiarities of Wolter-I Optics

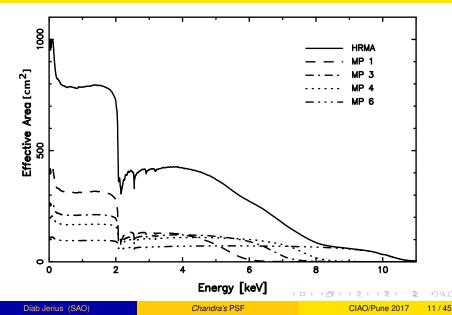
- The projected geometric area is small
- Optics are nested to increase the projected geometric area
- Grazing angles are different for each nested shell, so the energy response differs
- Focal *surface* is not a *plane*, but curved
- Each nested shell has a differently shaped focal surface.
- Good on-axis PSF, degrading off-axis

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

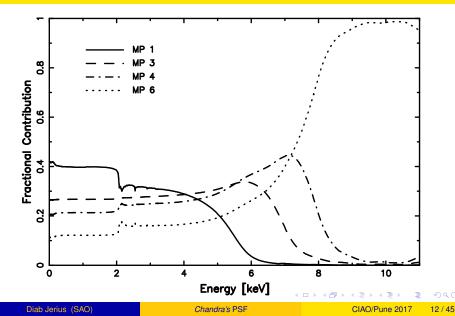
Outline

- All you need to know
- 2) The Hardware
 - Wolter–I Optics

Focal Plane & Spectral Response

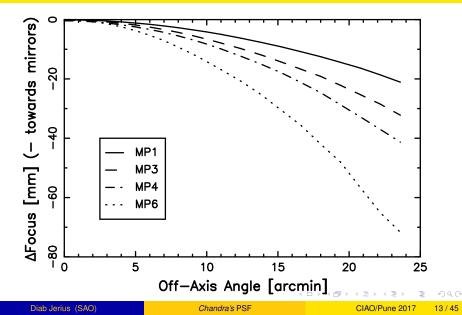

- Energy Response
- Focal Surface

4) PSF

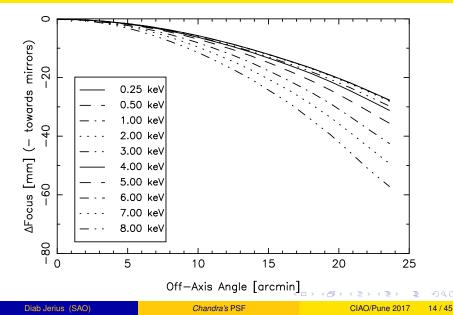

- 1D
- 2D
- Stability
- 5 Detector Effects
 - ACIS
 - HRC-I
 - Analysis Approaches
 - nesources

3

Total Effective Area (A_{eff})



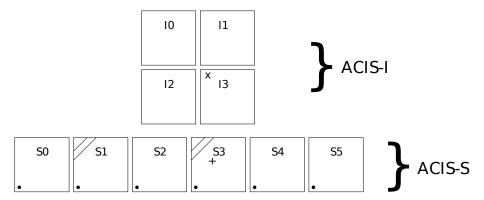
Fractional contributions of Shells to A_{eff}


Focal Surface

Geometric Focal Surfaces

Focal Surface

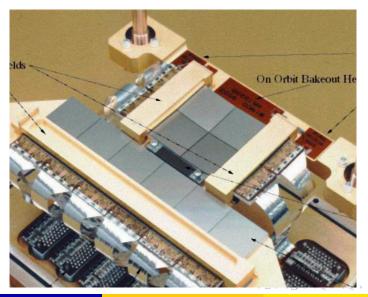
Combined Energy Dependent Focal Surfaces

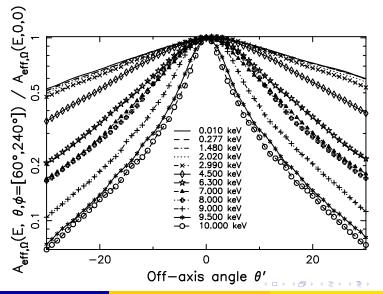


Focal Surface & Detectors

How do the imaging detectors interact with the focal surface?

- ... The ACIS-I chips are tilted to approximate the low-energy focal surface
- ... The ACIS-S array is curved to match the gratings' Rowland surface.
 - ... The S3 chip is fairly tangent to the focal surface on-axis
- ... HRC-I is tangent to the focal surface on-axis


ACIS Layout


2

イロト イロト イヨト イヨト

ACIS Layout

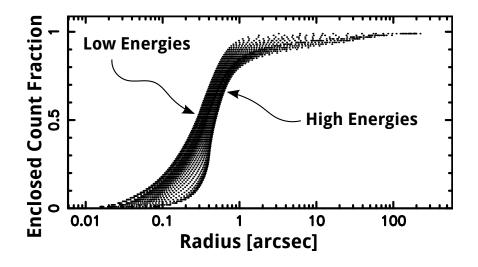
Vignetting

PS

Outline

- All you need to know
- 2) The Hardware
 - Wolter-I Optics
- Focal Plane & Spectral Response
 - Energy Response
 - Focal Surface

4 PSF

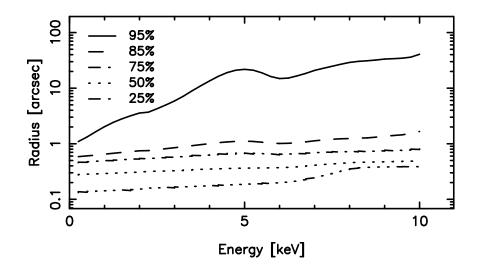

- 1D
- 2D
- Stability
- 5 Detector Effects
 - ACIS
 - HRC-I
 - Analysis Approaches
 - Resources

3

On-Axis Enclosed Counts Fraction (ECF)

PSF

1D

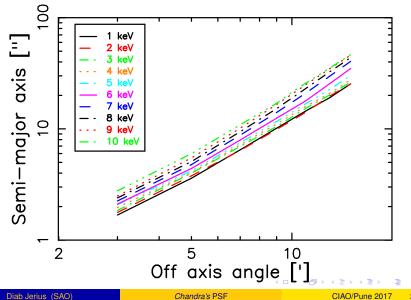


4 A N

On-Axis Enclosed Counts Fraction (ECF)

PSF

1D

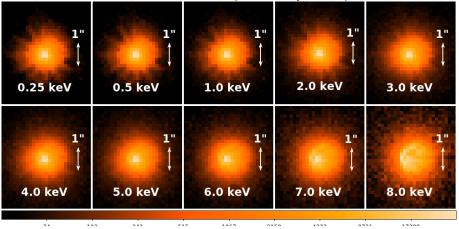


A >

PSF

1D

Off-Axis - 85% ECF


21/45

On-Axis

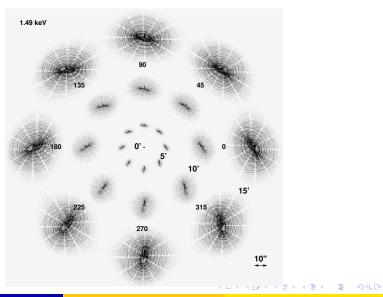
Ideal Detector (HRC-I pixels)

2D

PSF

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

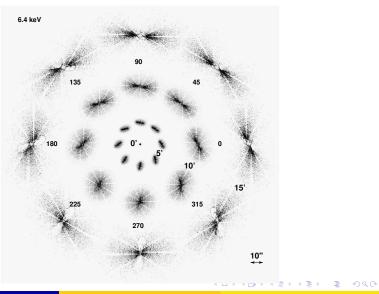
Diab Jerius (SAO)


Chandra's PSF

CIAO/Pune 2017 22 / 45

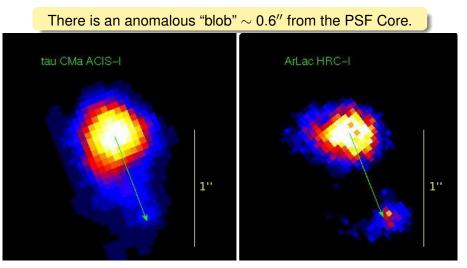
PSF

2D


Off-Axis: 1.49 keV

PSF

2D

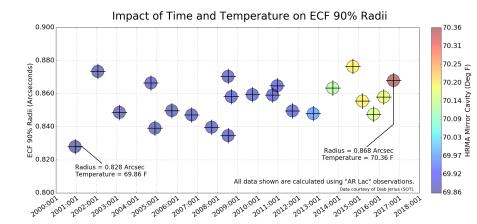

Off-Axis: 6.4 keV

SF

2D

Artifact

http://cxc.harvard.edu/ciao/caveats/psf_artifact.html


PSF Stability

PSF Stability

- *Chandra* is aging, many of its subsystems have changed over time.
- The PSF has in general been quite stable.
- The PSF "artifact" *has* changed over time, but the recommended analysis removes it from the data.

3

PSF Size: 90% Enclosed Count Fraction Radius

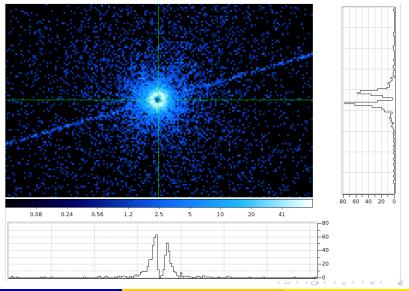
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

- All you need to know
- 2) The Hardware
 - Wolter–I Optics
- 3 Focal Plane & Spectral Response
 - Energy Response
 - Focal Surface

4 PSF

- 1D
- 2D
- Stability
- 5 Detector Effects
 - ACIS
 - HRC-I


Analysis Approaches

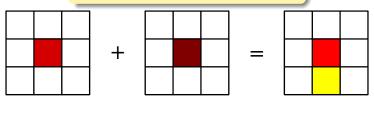
Resources

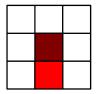
3

ACIS

Pileup (Mrk 421 OBSID 1714)

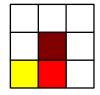
Diab Jerius (SAO)


Chandra's PSF


CIAO/Pune 2017 29 / 45

ACIS

Pileup: Definition

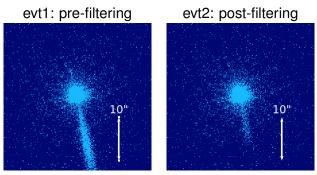

Pileup occurs when 2 or more photons arrive in a 3×3 detect island in a single ACIS frame.

+

э

Pileup: Effects

Pileup results in:


- Spectral distortion
 - ... 2 photons → 1 event with higher energy
- Grade distortion
 - ... merging charge clouds morph "good" events \rightarrow "bad" ones
 - ... loss of event

Pileup affects the PSF via:

- Loss of events in dense regions of PSF → craters
- grade morphing, which confuses
 Energy-Dependent Sub-pixel Event Reconstruction (EDSER)

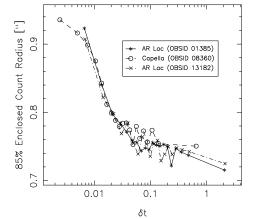
HRC-I: Ghosts

HRC-I artifacts (ghost "jets") are *usually* filtered out of evt2 files, but residues may remain for bright sources

AR Lac (OBSID 13182)

D	iab	Jeriu	is (SA	O)

Chandra's PSF


CIAO/Pune 2017 32 / 45

< ロ > < 同 > < 回 > < 回 >

HRC-I: Bright source PSF broadening

Some events have an additional blur component if they:

- $\bullet\,$ occur less than \approx 50 msec after their preceding event
- are physically proximate to the preceding event

-

< < >>

Outline

- All you need to know
- 2) The Hardware
 - Wolter–I Optics
- 3 Focal Plane & Spectral Response
 - Energy Response
 - Focal Surface

4 PSF

- 1D
- 2D
- Stability
- 5 Detector Effects
 - ACIS
 - HRC-I

Analysis Approaches

Resources

3

Overview

The Chandra PSF is

- ... marvelous
- ... complex
- ... marvelously complex
- It varies with energy and source off-axis and azimuthal position
- The detectors don't necessarily follow the focal surface
- The detectors aren't perfect
- The optics aren't perfect

3

(B)

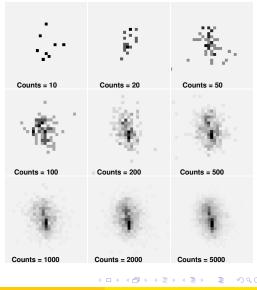
A D M A A A M M

Skepticism

To best use it:

Be Skeptical

- Understand the vagaries of the PSF
- Understand how the detectors interact with it
- Be sure that structure is real.


Simulate, Simulate, Simulate

< ロ > < 同 > < 回 > < 回 >

Analysis Approaches

Example: Low-count confusion

Jet? Multiple Sources? No! Off-axis point source.

Diab Jerius (SAO)

Chandra's PSF

CIAO/Pune 2017 37 / 45

Simulation Tools

MARX

- ... a first-order model of the mirrors
- ... models of the HRC and ACIS detectors
- ... models of the HETG and LETG gratings
- ... point and extended sources
- ... can use as-observed telescope aspect
- ... can use SIMPUT MARX >= 5.3.1

• SAOTrace

- ... a detailed model of the mirrors
- ... point and extended sources
- ... can use as-observed telescope aspect

It relies on MARX or the CIAO psf_project_ray tool to model detectors.

3

Simulation Tools, con't

ChaRT

- ... web front-end to SAOTrace
- ... can use as-observed telescope aspect
- ... point sources only

3

Quantitative Analysis Techniques

- Monte-Carlo simulations of observations
 - ... sensitivity analysis of source parameters
 - ... explore systematics in system models
- ID and 2D Source fits
 - ... CIAO provides sherpa fitting package

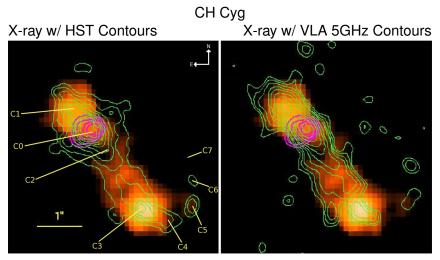
But...

- The models are not perfect
- Understand the limitations of the Optic and Detector models

How good are the models?

SAOTrace

- Backed by ground calibration
- 1D model good to $\sim 10^{\prime\prime}$
- Still working on PSF wings (beyond $\sim 10^{\prime\prime})$
- 2D model qualitatively correct
- A_{eff} & Vignetting correct


MARX Detectors

- Semi-emperical
- Not physics-based

Qualitative Analysis Techniques

- ACIS Sub-pixel Event Reconstruction (EDSER)
 - uses ACIS event grades to improve image resolution
 - on by default in standard products
 - not calibrated
 - use to identify interesting structure; use non-EDSER data for quantitative measurements
- Deconvolution
 - CIAO provides Lucy-Richardson via arestore.
 - USE SAOTrace (or ChaRT) simulations
 - does not preserve flux; use to identify interesting structure; use non-EDSER data for quantitative measurements
 - Not everything you see is real.
- Adaptive Smoothing
 - CIAO **provides** csmooth, dmimgadapt.
 - does not preserve flux; use to identify interesting structure; use non-EDSER data for quantitative measurements
 - Not everything you see is real.

What's Possible

Karovska et al., ApJ Letters, 710 132, 2010

Diab Jerius (SAO)

Chandra's PSF

CIAO/Pune 2017 43 / 45

4 3 > 4 3

Outline

- All you need to know
- 2) The Hardware
 - Wolter–I Optics
- 3 Focal Plane & Spectral Response
 - Energy Response
 - Focal Surface

4 PSF

- 1D
- 2D
- Stability
- 5 Detector Effects
 - ACIS
 - HRC-I
 - Analysis Approaches
 - Resources

3

Resources

PSF Central

http://cxc.harvard.edu/ciao/PSFs/psf_central.html

Calibration web site

http://cxc.harvard.edu/cal/

- Calibration Workshop Presentations http://cxc.harvard.edu/ccr/
- CIAO Imaging Threads and Guides http://cxc.harvard.edu/ciao/threads/imag.html
- CXC Help Desk

http://cxc.harvard.edu/helpdesk/

- Others have done this before.
 Check the literature, especially if you're trying something tricky
 - WebChaser

http://cda.harvard.edu/chaser/

 Chandra Data Archive bibliography search http://cxc.harvard.edu/cgi-gen/cda/bibliography