Chandra ACIS Sub-pixel Resolution

D. -W. Kim ${ }^{1}$, C. S. Anderson ${ }^{1}$, A. E. Mossman ${ }^{1}$, G .E. Allen², G. Fabbiano ${ }^{1}$,
K. J. Glotfelty ${ }^{1}$, M. Karovska ${ }^{1}$, V. L. Kashyap ${ }^{1}$, J. C. McDowell ${ }^{1}$
${ }^{1}$ Smithsonian Astrophysical Observatory,
${ }^{2}$ MIT Kavli Institute for Astrophysics and Space Research
We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30\%. With the improve resolution, we detect $\sim 20 \%$ more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy.

How to obtain the best possible resolution

1. Sub-pixel binning

Chandra coordinates (by dither + aspect correction) already contain positional accuracy finer than ACIS-pixel (0.492 arcsec).
2. Pixel-randonmization off

The current pipeline default is to apply pixel randomization by $1 / 2 \mathrm{ACIS}$ pixel on the chip
coordinate to remove the instrumental "gridded coordinate, to remove the instrumental "gridded" appearance of the data and to avoid any
possible aliasing affects associated with this spatial rrid. possible aliasing affects associated with this spatial grid.
3.ACIS sub-pixel algorithm

Improve position by fully utilizing 3×3 event islands
Implemented in CIAO 4.3 (acis_process_events)
For details, see http://cxc.harvard.edu/ciao/why/acissubpix.html
Previous algorithms:
Tsunemi, et al. 2001, Ap J, 554, 496 - first implementation
Mori, et al. 2001, in ASP Conf. Ser. 251, p576: Improvement by selecting the split pixel event Liet al. 2003, ApJ, 590, 586 SER $=$ subpix event repositioning
Li et al. 2004, ApJ, 610,1204 EDSER $=$ energy dependent subpix
4. PSF deconvolution (not discussed here)

Bin $=1 \quad \begin{gathered}\text { SN1987A } \\ \text { (Energy 30-5000ev) } \\ 1 / 4\end{gathered}$

NGC 1386

These examples illustrate the improved resolution for a bright extended source.

The top row contains the original image with bin $1,1 / 4$, and 1/8 pixel

These can be directly compared to the image below which uses the same bin parameter, but has pixel-randomization removed and a sub-pixel event repositioning algorithm applied.
(Red squares are 1 arcsecond per side.)

TEST 1: Improvement in point source sizes
Selected sample: Five bright, on-axis sources with pileup fraction less than 5%. Two bright, off-axis sources with pileup fraction less than 5%

	ChaMP srcid\qquad	$\begin{gathered} \text { ra } \\ \hdashline 199.275644 \\ \hline \end{gathered}$	dec29.154946	netB off-axisangle (deg) (sec)			cnt_rate Pileup (cnt/sec) Fraction (\%	
02254	xS02254B1_002	212.84763		968	1.54	5638	0.0	
2927	xs00927B3_0	132.2422	44.909850	1255	0.59	121434		1
01602	XS01602B	96.5045	82.056729	533	0.40	41663	0.012	2
03140	xS03140B7-001	178.93579	4445	516	0.5	801	0.018431	
	xs					663		
04936	XS0493	163.320038	57.597492	2510	4.00	76227	0.032941	

Source Size as measured by a CIAO tool, "srcextent" which calculates the size (sigma) and associated uncertainty of a photon-count source image using the Mexican Hat Optimization algorithm (Houck 2007).
The uncertainty (at 90% confidence) is derived from Monte Carlo trials.

$02280.51(0.47-0.544) 0.48(0.44-0.53) 0.47$ (0.43-0.52) 0.43 (0.40-0.46) 0.40 (0.37-0.43) 0.39 (0.37-0.42) 1624

a and A: pipeline products

b and B: pixel randomization off
c and C: sub-pixel algorithm applied

* Applying sub-pixel binning (1/4), the source size is reduced by 19-24\%.
* Removing pixel randomization and applying the sub-pixel algorithm,
the source size is further reduced by another 6-8\%
* However, no improvement for off-axis sources

Test 2: Improvement in detection of faint sources embedded in diffuse emission
With the improved resolution, we detect $\sim 20 \%$ more faint sources when embedded on the extended, diffuse emission in a crowded field. To check whether the new sources are real or suprious, we compare sources detected in shallow and deep images.

We assume that the real (false) source which are newly found in the shallow image would (not) be detected in the deep image. Because some point sources (LMXBs) in elliptical galaxies are variable, the false source rate is actually an upper limit. To lessen the affect of variable sources, we cut a deep observation ($90-110 \mathrm{ks}$) into smaller pieces (10 ks and 20 ks), instead of merging multiple observations taken in different observation times.

Chandra Re-processing

The new sub-pixel algorith will be implemented in the next major reprocessing which is expected to start within 2011.

In $\mathrm{n}-\mathrm{m}$,
$\mathrm{n}=$ number of new sources confirmed in the deeper image.
$\mathrm{m}=$ number of new sources not confirmed in the deeper image.

Subtotal $240 \quad 7-2 \begin{array}{llllll}23-12 & 7-2 & 18-3 & 13-4 & 33-11 & 12-3 \\ \text { 30-1 }\end{array}$

O. number of sources from the pipeline image binned by ACIS pixel (0.092 ")

$\mathbf{- 2 0 \%}$ more sources detected with false source rate of $\sim \mathbf{1 0 \%}$

- After binning by $1 / 2$ pixel the fraction of new sources is $8-9 \%(21 / 240,24 / 306)$ of which $13-14 \%(3 / 21,3 / 24)$ may be false, i.e., not detected in the deeper image.
- After applying the algorithm and binning by $1 / 2$ pixel, the fraction of new sources is $13-25 \%(31 / 240,75 / 306)$ of which $3-7 \%(1 / 31,5 / 75)$ may be false.
- $6-9 \%(15 / 240,29 / 306)$ of original sources are lost. $7-26 \%$ of them $(3 / 15,2 / 29)$ may be false, i.e., not in the deeper image. - original detections still necessary.
- However, there is no improvement when the background and diffuse emissions are low. e.g., a similar test with CDF-S data found that most new sources are false.

No Grid Structure by Aliasing

In the previous Chandra processing, the pixel randonmization wa applied to remove the grid structure by an aliasing effect and to improve the source position. We confirmed that the new sub-pixel algorithm (without pixel randomization) does not introduce a grid structure as long as the dither was on during the observation and does not worsen the positional accuracy of detected sources.

