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What is AstroStatistics for?

Obtain estimates and uncertainties on quantities useful for 
astrophysical inference,

while taking into account instrument sensitivities, 
statistical fluctuations, and circumstances of observation,

and avoid the pitfalls of making incorrect inferences.

Importantly, it assists you in asking the right question of 
the data and to obtain the best possible answer.

VLK: CIAO Workshop. AAS 233/Seattle, 2019 Jan 5
!3



Outline

❖ Properties of X-ray data

❖ Making peace with jargon

❖ Statistical concepts
❖ Tools at our disposal

❖ Statistical Concepts

1.Error Propagation

2.Bootstrap

3.Distributions

4.p-values and Hypothesis Tests

5.Bayesian analysis

6.MCMC

7.Model Fitting

8.Things to be afraid of

!4
VLK: CIAO Workshop. AAS 233/Seattle, 2019 Jan 5



X-ray data are not like optical data

❖ A list of events {x,y,t,E}→ marked Poisson process

❖ ∃ Calibration: effective areas, spectral responses, point 
spread functions, and many other detector quirks

❖ Poisson likelihood: 

Prob(k counts when intensity is θ)  =  θᵏ e-θ/Γ(k+1)

❖ Gaussian approximation is widely used (µ = σ2 = k) but 
often inappropriate
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Jargon
❖ Probability, p(⋅) — frequency of occurrence or degree of belief

❖ Likelihood, L ≡ p(D|θ) — probability of obtaining observed data 
assuming a particular model

❖ Fitting

❖ χ² — measure of closeness, also goodness of fit ≡ –2 ln(Gaussian 
likelihood)

❖ cstat/cash ≡ –2 ln(Poisson Likelihood)

❖ p-values/Null Hypothesis Significance Testing

❖ Tests of dissimilarity: Kolmogorov-Smirnoff, F-test
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1.1 Error Propagation

❖ How to propagate the uncertainty from one stage to 
another

❖ Simple case: assume everything is distributed as a 
Gaussian, and has well-defined means and standard 
deviations

❖ g=g(ai)  

⇒ σ²(g) = ∑i (∂g/∂ai)2 σ²(ai)
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(digression) StdDev vs StdErr

❖ Standard deviation describes the distribution width of 
the sample

❖ Standard error describes the precision with which the 
mean of the sample is determined.
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(digression) accuracy vs precision

❖ There is always a tradeoff between accuracy (bias) and 
precision (variance)

❖ E.g., to describe a light curve, you could use each 
observed datum, which minimizes bias, but has large 
variance within the sample.  Or you could use the mean, 
which minimizes variance in the representation, but at 
each time differs substantially from the true value.
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1.2 square adding
g = C ⋅ a  

→ σg = C ⋅ σₐ  
uncertainties scale 

g = ln(a) 
→ σg = σₐ/a  
converts to fractional error 

g = 1/a  
→ σg = (1/a2) σa ≡ (g/a) σa  
⇒ σg/g = σₐ/a 
fractional errors match 

g = a + b  
→ σ²g = σ²a+σ²b 
square-add

g = g(ai) 

σ²(g) = ∑ᵢ (∂g/∂aᵢ)² σ²ᵢ
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2. Bootstrap
❖ How to estimate the uncertainty within almost any set of measurements

❖ Steps: 

❖ 1: construct summary statistic

❖ 2: extract random sample of same size from original dataset and 
recompute summary statistic from Step 1

❖ 3: repeat Step 2 a large number of times and compute mean and variance 
of summary statistic

❖ Quick and easy

❖ Accurate, if sample in hand is a good representation of population (e.g., 
don’t try this with power-laws)
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3. Distributions
❖ Binomial — one or the other, with probability ρ // enclosed energy fractions

k of one out of a total of N, p(k|N,ρ) = NCk ρk (1-ρ)N-k

❖ Poisson — events occur randomly // photon counts

p(k| θ) = (1/k!) θk e-θ 

❖ Gaussian (aka Normal)— all summary statistics that have a sufficiently large sample

f(x;µ,σ2) = (1/σ√2π) exp[-(x-µ)²/(2σ²)] 

❖ Gamma — continuous variable conjugate to Poisson

p(x;α, β) = βα/ Γ(α) ⋅ xα-1 e-βx , x≥ 0, α≥ 0, β≥ 0; Poisson for β=1 and α=k+1 

❖ χ² — measure of similarity and distance between samples (what is the chance that 
separate Gaussian distributions together have a given χ²)
p(χ²|n) = (2-n/2/(n/2-1)!) (χ²)(n-2)/2 exp[-χ²/2]  
∝ (χ²)(n/2-1) exp[-χ²/2]  ≡  Gamma(χ²;n/2,-1/2)
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Light curve of steady source HZ 43 binned at 10 sec



Distribution of counts in the light curve binned at 10 sec



Light curve of steady source HZ 43 binned at 0.5 sec



Distribution of counts in the light curve binned at 0.5 sec



Light curve of steady source HZ 43 binned at 0.1 sec



Distribution of counts in the light curve binned at 0.1 sec



4.1 p-values

• A p-value is how far out in the tail of a distribution a 
measured or computed value falls. 

• It’s the fractional area under the distribution that exceeds the 
specified value. 

• The smaller the p-value, the more extreme of a fluctuation is 
necessary for the underlying distribution to have generated it
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Distribution of counts in the light curve binned at 0.5 sec

p=0.11

p=0.006 p=0.0015



4.2 Hypothesis Tests
• Compare distributions by setting up competing hypotheses 

• Null hypothesis H0 is that both samples are drawn from the 
same distribution 

• Calculate a statistic from the data and compare to the 
expected distribution of the statistic.  If calculated value 
exceeds a critical threshold, you may reject — not disprove, 
but reject — the null hypothesis. 

• Important to decide on the statistic and the threshold before 
the experiment or observational study is conducted
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4.3 Kolmogorov-Smirnov
❖ Are two samples drawn from different distributions? 

❖ Computes cumulative distribution for both, then computes the p-value for 
the observed maximum distance between them 

❖ Alternative methods exist, but are usually narrower in applicability and not 
unique in higher D 

❖ Pros: easy to use, distribution-free p-values, unambiguous in 1-D, no 
restriction on sample size 

❖ Cons: prone to misuse (do not use as a way to estimate parameters), not 
very powerful, insensitive to differences near the ends, limited to 1-D 

❖ [https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test]
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5.1 Basics of Bayesian Analysis

❖ Mathematical model of probability calculus

❖ Deals with specifying parametric models, and computing 
probabilities and updating them conditional on observed data

❖ Jargon: p(A|B) is the conditional probability that A is true given B.

❖ Axioms
❖ Product rule for "A and B": p(AB) = p(A|B) ⋅ p(B)

❖ Sum rule for "A or B": p(A+B) = p(A) + p(B) – p(AB)
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5.2 Consider Aperture Photometry

• Say fS and fB are the intensities 
of the source and background

• Measure counts:

• NS in the source region

• NB in background region 
which is ρ× source region 
area

• Goal: compute p(fS|NS,NB,ρ)
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NS

NB

NS ~ Poisson(µS=fS+fB) 

NB ~ Poisson(µB=ρ⋅fB)



5.3 Coordinate transformations

NS ~ Pois(µS) and NB ~ Pois(µB), with µS=fS+fB and µB=ρ⋅fB 

The joint distribution of the parameters 

p(µS,µB|NS,NB,ρ) dµS dµB = p(fS,fB|NS,NB,ρ) J(µS,µB;fS,fB) dfS dfB 

J(µS,µB;fS,fB) =                            =                  = ρ 

p(µS,µB|NS,NB,ρ) dµS dµB = p(fS,fB|NS,NB,ρ) ρ dfS dfB
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∂μS/∂fS ∂μB/∂fS

∂μS/∂fB ∂μB/∂fB

1 0

1 ρ



5.4 Bayes’ Theorem

p(AB) = p(A|B)⋅p(B) 

≡ p(B|A)⋅p(A) 

⇒ p(A|B) = p(B|A)⋅p(A)/p(B) 

p(θ|D) = p(D|θ) p(θ) / p(D) 

p(θ|D) ∝ p(D|θ) p(θ)
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p(µS,µB|NS,NB,ρ)  

= p(µS|µB,NS,NB,ρ) ⋅ p(µB|NS,NB,ρ) 

= p(µS|NS) ⋅ p(µB|NB,ρ) 

→ apply Bayes’ Theorem → 

∝ p(NS|µS)⋅p(µS) ⋅ p(NB|µB,ρ)⋅p(µB)



(digression) Uncertainty Interval

• p(Θ|D) describes the uncertainty on Θ 

• Usually reported as 68% or 90% central intervals  
(always say what they are!) 

• For Bayesian credible intervals, no guarantee of good 
coverage properties (because of priors), unlike frequentist 
confidence intervals 

 (“the true value is contained 90% of the time for CIs 
calculated in this manner when the experiment is repeated”)
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(digression) Error Bars vs Limits

• Uncertainty intervals are not limits 

• Intervals are defined by the bounds that account for the 
specified area under p(Θ|D) — there are an infinite number of 
possible intervals 

• Limits are defined by a process of thresholding — you get an 
upper limit to the intensity by looking at how bright a source 
could have been and still not be detected
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5.5 Marginalization

   dµS dµB  

× p(NS|µS) 

× p(µS)  

× p(NB|µB,ρ)  

× p(µB)
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   dµS dµB  

× [µSNS e–µS / Γ(NS+1)] 

× [βSαS/Γ(αS) e–βSµS] 

× [µBNB e–µB / Γ(NB+1)]  

× [βBαB/Γ(αB) e–βBµB]

   ρ  dfS   dfB 

× (fS+fB)NS e–(fS+fB)/ Γ(NS+1) 

× βSαS/Γ(αS) e–βS(fS+fB) 

× ρfBNB e–ρfB / Γ(NB+1)  

× βBαB/Γ(αB) e–βBρfB 

 ∫ 

p(µS,µB|NS,NB,ρ) dµS dµB  ∝ p(NS|µS) p(µS) ⋅ p(NB|µB,ρ) p(µB) dµS dµB 

Marginalize/Integrate over
uninteresting nuisance parameters



5.6 conceptually simple, computationally complex

p(fS|NS,NB,ρ)  

∝ ∑k=0:NS [Γ(NB+k+1)/Γ(NS-k+1)Γ(k+1)] fS(NS-k) e–(1+βS)fS 
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6. Markov Chain Monte Carlo
❖ What is it?

❖ A method to quickly explore high-dimensional parameter spaces and obtain 
representative measures of parameter values and uncertainties

❖ Why do it?

❖ Robust, insensitive to starting conditions, easy to code

❖ How does it work?

❖ Compute the likelihood for given parameter values, get a new, randomly 
drawn value, and compare the new likelihood to the old one

❖ If it improves the likelihood, accept the new value and repeat the cycle

❖ If it does not improve the likelihood, accept with a probability equal to the 
ratio, else reject and get a new value
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7.1 Fitting

❖ Non-linear metric minimization

❖ χ² (any of several varieties) — ∑ᵢ (Di-Mi)²/σᵢ² 

❖ fit is good if χ²/dof ~1±√2/dof

❖ cstat — 2 ∑ᵢ (Mi - Di + Di⋅(lnDi – lnMi)) 

❖ asymptotically χ²  

❖ use parametric bootstrap or Kaastra (2017, A&A 605, 
A51) to determine goodness of fit
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7.2 Model Comparison
❖ Model comparison 

❖ use F-test iff simpler (“null”) model is fully contained within complex 
(“alternate”) model 

❖ otherwise use posterior predictive p-value checks (see Protassov et al. 2002, 
ApJ 571, 545): 

❖ simulate fake datasets from best-fit parameters of null model 

❖ fit with both null and alternate model 

❖ compute distributions of ratios of the best-fit statistic and compare 
against the ratio for actual data 

❖ if ratio from observed data is far in the tail of the simulated distribution, 
then it is unlikely that the null model is a good descriptor of the data
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8.1 Danger Danger
❖ asymptotic validity — be aware of the assumptions made to get easy 

analytical results (e.g., p-value for F-test, χ² as measure of goodness)

❖ convergence, stopping rules, effect of priors — always do sensitivity tests 

❖ overfitting — to avoid fitting fluctuations in the data, balance bias against 
variance

❖ p-values — measure of how far in the tail of a distribution the current 
observation is, not a proof of the validity of an alternative hypothesis, nor 
of the falsity of the null hypothesis

❖ Type I, Type II, Type S, Type M errors — false positive, false negatives, 
sign errors on weak effects, Eddington Bias
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8.2 Types of Bias
❖ Type I — false positives, when you claim a detection over a 

background because of a fluctuation above some threshold

❖ Type II — false negatives, when you fail to detect an event 
because its response fell below the detection threshold

❖ Type M — an incorrect estimation of the size of the effect because 
large fluctuations are preferentially detected (cf. Eddington bias)

❖ Type S — an incorrect estimation of the sign of a weak effect 
because of fluctuations in the wrong direction
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8.3 Type I and Type II Errors

 37 Kashyap et al 2010



8.4 Type S Error

 38



8.5 Eddington Bias

Eddington, A.S., 1913, MNRAS, 73, 359, On a formula for correcting 
statistics for the effects of a known error of observation

Kashyap 2001, Power of wavdetect!39
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Statistical Tools in CIAO/Sherpa
❖ fit/conf/projection: non-linear minimization fitting and uncertainty intervals 

❖ get_draws: MCMC engine (van Dyk et al. 2001, ApJ 548, 224) 

❖ calc_ftest: model comparison via F-test

❖ plot_pvalue, plot_pvalue_results: to do posterior predictive p-value checks 
(Protassov et al. 2002, ApJ 571, 545) 

❖ glvary: light curve modeling (Gregory & Loredo 1992, ApJ 398, 146)  

❖ celldetect/wavdetect/vtpdetect: source detection in images 

❖ aprates: Bayesian aperture photometry (Primini & Kashyap 2014, ApJ 796, 24) 

❖ the python interpreter in Sherpa gives access to python libraries, and can be used to 
call upon packages and libraries in R, which are written by statisticians for statisticians
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