CIAO WORKSHOP AAS235/HONOLULU 2020 JAN 3-4

CHANDRA HIGH-RESOLUTION SPECTRA

VINAY KASHYAP (CXC/CFA)

OUTLINE

GOAL: EXTRACT AND ANALYZE CHANDRA GRATING SPECTRA

- 1. Theory
 - Braggs' Law, Rowland Circle, Orders
- 2. Hardware
 - [LETGS|HETGS]+[ACIS-S|HRC-[SI]]
- 3. Pipeline
 - tgdetect, tg_resolve_events, tg_create_mask, tgextract
- 4. Analysis

1. THEORY BRAGGING ON THE X-WAVES

 $n\lambda = 2d \sin\theta$

1. THEORY **ROWLAND CIRCLE** small angles; YY' assumed negligible Χ **Concave reflection grating** radius=2×Rowland Gαία θ αα θ 0 Rowland circle R P' dispersed $\theta \propto \lambda$

Q

P Oth order

Source s

1. THEORY TRANSMISSION GRATING GEOMETRY

1. THEORY ORDERS AND DISPERSION RELATION

- You can measure the distance of a photon from the zeroth order in the detector plane and translate that distance to $n\lambda$
- If there is enough intrinsic energy resolution in the detector, you can separate the orders and remove the degeneracy in λ
- In the small angle approximation at which most gratings operate, distance along the detector,

dispersion distance $\propto \delta \theta \propto \lambda$

 Resolution is limited by the size of the 0th order image, with δθ ∝ PSF-width ∝ δλ
 Along the Rowland circle, this is fixed, so
 δλ ≈ constant ⇒ Resolution λ/δλ↑ as λ↑

2. HARDWARE HETGS

- High-Energy Transmission Grating Spectrometer
 - Two gratings in one: Medium Energy Grating (MEG) for outer mirror shells, and High Energy Grating (HEG) for inner shells
- The facets are tilted (+4.7° MEG, –5.2° HEG), leading to two arms which intersect at the 0th order
- The MEG period is ≈2× HEG's, so wavelength coverage of MEG is double that of HEG, with half the resolution
- Primary detector is ACIS-S, optionally also HRC-I (but as yet unsupported)
- Chandra POG Chapter 8:

http://cxc.harvard.edu/proposer/POG/html/chap8.html

HETG facets and bars

https://space.mit.edu/HETG/hetg_info.html

HETGS schematic and footprint on ACIS-S

2. HARDWARE LETGS

- Low-Energy Transmission Grating Spectrometer
- The Low Energy Grating (LEG) period is ≈2.5×MEG's, so resolution is lower, but wavelength coverage is larger
- Primary detector by usage is HRC-S, optionally also ACIS-S and HRC-I
- Chandra POG Chapter 9:

http://cxc.harvard.edu/proposer/POG/html/chap9.html

LETG gratings: wires, coarse, and fine support

https://www.sron.nl/experimenten-50-jaar-ruimteonderzoek-2820/i-letg

0.00 0.10 0.20 0.30 0.40 0.50 length [mm]

2. THE HARDWARE ACIS-S

2. THE HARDWARE

HRC-S & HRC-I

Calibration Source

HRC focal plane array (chandra.harvard.edu) Looking into the HRC Vacuum Housing

2. HARDWARE HETGS+ACIS-S

Capella ObsID 1235

8.4

16.9

34.0

68.4

136.5

0.8

1.9

4.0

0.3

2. HARDWARE LETGS+ACIS-S

2. HARDWARE LETGS+HRC-S

Capella ObsID 1248

123

249

499

1005

2005

vlk: CIAO Workshop AS235/Honolulu 2020 Jan 3-4

Figure 9.5: The front surfaces of the HRC-S detector segments and their relationship to the Rowland circle are shown schematically. The scalloped line beneath them is the difference between the detector surface and the Rowland circle.

2. HARDWARE LETGS+HRC-I

Cyg X-2 ObsID 87

Capella ObsID 19837

vlk: CIAO Workshop AS235/Honolulu 2020 Jan 3-4

vlk: CIAO Workshop AS235/Honolulu 2020 Jan 3-4

Figure 1: Expected spectral resolving power for HETG/ HRC-I for different focus offsets based on MARX ray-trace simulations.

3. SOFTWARE EXTRACT DATA USING CIAO

https://cxc.harvard.edu/ciao/threads/gspec.html

- Find the 0th order
- Fix the regions from which to extract dispersed spectra
- Assign wavelengths
- Extract into standard format files
- Create redistribution matrix (RMF) and ancillary response (ARF) files

3. SOFTWARE WHERE IS THE SOURCE?

- Must first locate the 0th order
- Use tgdetect or tg_findzo, or tgdetect2 to automatically choose between them
- tgdetect: uses celldetect to find and centroid 0th order sources, works with either ACIS or HRC data
- tg_findzo: for ACIS, when 0th order is piled up, uses readout streaks and dispersion axis to pinpoint the intersection

Chandra HETG

Where is my source?

3. SOFTWARE MAP TO WAVELENGTH

Distance from 0th order gives you wavelength

LETG

HEG

Greater Distance = Higher Resolution Resolution Limited by CCDs & Gratings Accuracy

(Mike Nowak)

LETG

HEG

Greater Distance = Higher Resolution Resolution Limited by CCDs & Gratings Accuracy

(Mike Nowak)

3. SOFTWARE MAP TO WAVELENGTH

- OSIP (Order Sorting Integrated Probability) Tables for ACIS
- The ratio of CCD energy to inferred energy, $\mathcal{R}_0 = E_{CCD}/(mhc/\lambda)$ can be used to separate the orders
 - "Standard" pre-calculated Ro
 - "Flat" set a fixed ratio for range of *R*₀, e.g., 0.8-1.3

unix%> ds9 acisf11044N002_evt2.fits.gz &

000	🗴 SAOImage d	59				
FI OOO X Binning Parameters	S Analysis					Help
File Edit Method Block Buffer File						
Ob Bin Columns Block Min Max				<u> </u>		
Val x 1 0.5 8192.5						
WC						
Ph 50 1000000						
Fra Bin Center 4096.5 4050						
or center of data	zoom	scale	color	region	WCS	help
Bin Filter		aips0	heat	cool	I [rainbow
Bin 3rd Column Depth Min Max						
					an a	
Apply Update Filter Clear Filter Close						
e la					Sec. 1	
						DER SER
				Service -	en de la compañía de En vicio de la compañía	
			and the second second			and the second second
	erterzetter.	Sinterio in Stratic State	and a second second		and size with the	With a construction
					100	200 300 40
						li

(Mike Nowak)

Order Sorting Plot

3. SOFTWARE MAP TO WAVELENGTH

- OSIP (Order Sorting Integrated Probability) Tables for ACIS
- The ratio of CCD energy to inferred energy, *R*₀=E_{CCD}/(*m*hc/λ) can be used to separate the orders
 - "Standard" pre-calculated Ro
 - "Flat" set a fixed ratio for range of *R*₀, e.g., 0.8-1.3
- You can't do this on the HRC because there is very little intrinsic energy resolution
 - Must construct grating RMFs using mkgrmf for several orders, and use this Sherpa thread to use them during fitting

http://cxc.harvard.edu/sherpa/threads/grating_hrcsletg/

3. SOFTWARE WATCH OUT: TIME FILTERING

- At this stage you have a Level 1.5 file, or the so-called evtla file
- There is a bug in dmcopy where if you apply additional time filtering to this file, the GTI block gets corrupted and the EXPOSURE value in the header becomes incorrect
- To work around, do something like this:
 - cp -p evtla old_evtla
 - dmcopy old_evtla"[time=@filter_spec]" evtla clobber=yes
 - dmappend old_evtla"[region][subspace -time]" evtla
- NOT a problem if you run chandra_repro
3. SOFTWARE

WATCH OUT: HRC-S BACKGROUND REDUCTION

- HRC-S does not have the intrinsic spectral resolution to do order sorting. This means that the background tends to be higher.
- There is a wavelength and PI based filter that can be applied to remove a large fraction of the particle background at minimal cost to the source counts,

\$CALDB/data/chandra/hrc/tgpimask2/letgD1999-07-22pireg_tgmap_N0001.fits

- HOWEVER: recently, because of the gain drop in the HRC, this filter is working less efficiently.
- If you are working with very soft sources λ >44Å, it is better to not apply this filter.

vlk: CIAO Workshop AS235/Honolulu 2020 Jan 3-4

3. SOFTWARE TG_CREATE_MASK

- Picks out sky spatial region into which the photons are dispersed
- fraction of enclosed energy is put into RMF

3. SOFTWARE EXTRACT SPECTRA

- tgextract to make pha2 files that can be read in and analyzed with Sherpa
 - Extraction efficiencies for adopted widths go into RMF, not ARF
- mkgarf to make effective area files, which includes detector spatial information (including QE uniformity, bad pixels, etc.), and the effect of dither
- mkgrmf to make RMFs
- XSPEC compatibility: tgextract2 to make separate TypeI pha files, tgsplit to convert pha2 into pha, tg_bkg to create separate background files

optimized, narrower bowtie http://cxc.cfa.harvard.edu/cal/letg/LetgHrcEEFRAC/

vlk: CIAO Workshop AS235/Honolulu 2020 Jan 3-4

(Brad Wargelin)

3. SOFTWARE WATCH OUT: CONTINUOUS CLOCKING

- Image is collapsed into one dimension
- But MEG 2nd orders are suppressed, so HEG 1st order is always assumed
- Extraction width assumed to be 100%
- OSIP assumed flat (~0.8-1.3)
- For best results, put MEG –1 and HEG +1 off the chip

3. SOFTWARE WATCH OUT: EXPOSURES

- Different chips can have different exposures
- event files will have the mean exposure of all the chips
- Effective Area files will have the mean exposure of the chips associated with that detector
- Be careful when making light curves!

3. SOFTWARE VARIABLES

- Arrays of interest in evt1a/evt2
 - tg_r, tg_mlam, tg_lam coordinates along dispersion axis
 - tg_d coordinate along cross-dispersion axis
 - tg_part, tg_m marker for grating type and order
- Arrays of interest in pha2
 - tg_part, tg_m marker for grating type and order
 - tg_srcid source identifier
 - bin_lo, bin_hi wavelength grid
 - counts counts from source area
 - background_up, background_down counts from background areas (look for header keywords BACKSCUP and BACKSCDN)

3. SOFTWARE COMPLICATIONS

- No more global fits because most models are just not good enough
- pileup on ACIS, background in HRC can become important
- Chip and plate gaps, and mismatches between Rowland circle and detector plane require careful observation setups
- HETGS+HRC-I not yet supported in CIAO
- evolving calibration: contamination on ACIS, degap and gain drop on HRC

4. ANALYSIS

HIGH-RESOLUTION SPECTRA

vlk: CIAO Workshop AS235/Honolulu 2020 Jan 3-4

Figure 5: A portion of the HETGS spectrum of Cyg X-1 from ObsID 11044 (Miškovičová et al (2016, [11])). The data were divided by a model consisting of a power law absorbed by cold gas. Several lines show P Cygni profiles, such as Mg Ly α , Ne Ly α , and even Ne Ly β . The observation is from inferior conjunction, where the disk wind is observed most clearly. Components of He-like Mg XI are readily discerned, providing density diagnostics.

(Herman Marshall)

FIGURE 11:The bright continuum radia shows the imprint of the ISM along the 1 are seen in MEG spectra from neutral ov and doubly ionized oxygen, O II and O 1 range shown is roughly 0.558 keV to 0.5 Juett, Schulz, and Chakrabarty (2004).

Fig. 2 — Residuals from a fit of the 500 ks LETG+HRC-S spectrum of the blazar 1ES 1553+113 to a continuum model. Galactic O I and C II are detected, as well as lines due to C V and C VI in different filaments of the WHIM. From Nicastro et al. (2013).

Fig. 3 — Spectra of selected lines from LETGS observations of α Cen A. The use of strong primary colors is designed to separate out behavior of the K star (shaded yellow and red dots) from that of the G star (blue dots). Delicate pastels indicate 1σ photometric errors for B in orange and A in green. Approximate line formation temperatures are listed. Note the dramatic differences between the two stars at the shortest wavelengths (< 20 Å) compared to the rather similar fluxes at the longest wavelengths (> 170 Å). From Ayres (2014).

4. ANALYSIS RESOURCES

- Chandra Proposers' Observatory Guide
 - HETG (Chapter 8) http://cxc.harvard.edu/proposer/POG/html/chap8.html
 - LETG (Chapter 9) http://cxc.harvard.edu/proposer/POG/html/chap9.html
- Chandra Cal Pages
 - HETG https://space.mit.edu/CXC/calib/hetg_user.html
 - LETG http://cxc.harvard.edu/cal/letg/detailed_info.html
- CIAO Science Analysis Threads <u>http://cxc.harvard.edu/ciao/threads/gspec.html</u>
- Sherpa Threads <u>http://cxc.harvard.edu/sherpa/threads/fitting.html</u>
- D. Huenemoerder's Analysis Guide <u>https://space.mit.edu/ASC/analysis/</u> <u>AGfCHRS/AGfCHRS.html</u>
- TGCAT <u>http://tgcat.mit.edu</u>