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Now, Shifting Gears...

A model M has been fit to dataset D and either the maxi-
mum of the likelihood function £,,.«, the minimum of the
x* statistic x2. , or the mode of the posterior distribution
p(0|D) has been determined. What comes next?

e Model Comparison. The determination of which of a
suite of models (e.g. blackbody, power-law, etc.) best
represents the data.

e Parameter Estimation. The characterization of the
sampling distribution for each best-fit model parame-
ter (e.g. blackbody temperature and normalization),
which allows the errors (i.e. standard deviations) of
each parameter to be determined.

e Publication!

Here, we cannot ignore the frequentist/Bayesian divide.
Hence we will discuss how frequentists and Bayesians
would complete these tasks, separately...




Frequentist Model Comparison

Two models, My and Mj, have been fit to D. M,,
the “simpler” of the two models (generally speaking, the
model with fewer free parameters) is the null hypothesis.

A frequentist would compare these models by:

e constructing a test statistic 1" from the best-fit statis-
tics of each fit (e.g. Ax* = x5 — X});

e determining each sampling distributions for T,
p(T|My) and p(T|My);

e determining the significance, or Type I error, the
probability of selecting M; when M, is correct:

a = [ dTp(T|My):;

obs

e and determining the power, or Type II error, which is
related to the probability 3 of selecting My when M;
1s correct:

1—B = [° dTp(T|M).

= If v is smaller than a pre-defined threshold (< 0.05, or
< 107, ete., with smaller thresholds used for more con-
troversial alternative models), then the frequentist rejects
the null hypothesis.

= If there are several model comparison tests to choose
from, the frequentist uses the most powerful one!
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Figure 1: Comparison of distributions p(7T'|Mp) (from which one determines the significance
a) and p(T|M;) (from which one determines the power of the model comparison test 1 — 3
(Eadie et al. 1971, p. 217).



Frequentist Model Comparison

Standard frequentist model comparison tests include:

e The x* Goodness-of-Fit (GoF) test:

oo = [o dpOCIN = Ry)

min,

1 - Y 2 2
e dy? | 2 T
ZF(%) /Xr2nin,0 X ( 2 ) ©

e The Maximum Likelihood Ratio (MLR) test:
X 2MLR = /Ao;z dX2p(AX2|AP>,

where AP is the number of additional freely varying
model parameters in model Mj.

e The F-test:
ar = [, dF p(F|AP,N — P)
(N — P AP)
— I N-Py ) 9
N-—P,+(AP)F 2 2

where P; is the total number of thawed parameters in
model M;, I is the incomplete beta function, and F
is the F'-statistic

A 2 2

AP" (N — P)

These are standard tests because they allow estimation
of the significance without time-consuming simulations!



Frequentist Model Comparison

Notes and caveats regarding these standard tests:

e The GoF' test is an “alternative-free” test, as it does
not take into account the alternative model M;. It is
consequently a weak (i.e. not powerful) model com-
parison test and should not be used!

e Only the version of the F-test which generally has the
greatest power is shown above: in principle, one can
construct three F' statistics out of x3, x%, and Ax?.

e The MLR ratio test is generally the most powertul for
detecting emission and absorption lines in spectra.

But the most important caveat of all is that...




Frequentist Model Comparison

The F' and MLR tests are commonly misused by as-
tronomers! There are two important conditions that must
be met so that an estimated derived value « is actually
correct, i.e. so that it is an accurate approximation of
the tail integral of the sampling distribution (Protassov

et al. 2001):

e )My must be nested within M, 7.e. one can obtain M,
by setting the extra AP parameters of M, to default
values, often zero; and

e those default values may not be on a parameter space
boundary.

The second condition may not be met, e.g., when one
is attempting to detect an emission line, whose default
amplitude is zero and whose minimum amplitude is zero.
Protassov et al. recommend Bayesian posterior predictive
probability values as an alternative, but a discussion of
this topic is beyond the scope of this class.

If the conditions for using these tests are not met, then
they can still be used, but the significance must be com-
puted via Monte Carlo simulations.




Bayesian Model Comparison

In the previous class, we showed how Bayes’ theorem is
applied in model fits. It can also be applied to model
comparison:
p(D|M)

p(D)
e p(M) is the prior probability for M;

p(M|D) = p(M)

e p(D) is an ignorable normalization constant; and
e p(D|M) is the average, or global, likelihood:

p(D|M) = [d8p(6|M)p(D|M,0)
= [dop(6|M)L(M,0).

In other words, it is the (normalized) integral of the
posterior distribution over all parameter space. Note
that this integral may be computed numerically, by
brute force, or if the likelihood surface is approxi-
mately a multi-dimensional Gaussian (i.e. if £ o
exp|—x?*/2]), by the Laplace approzimation:

p(DIM) = pB|M)2m)"*/detC Loy ,

where C' is the covariance matrix (estimated numeri-
cally at the mode).



Bayesian Model Comparison

To compare two models, a Bayesian computes the odds,
or odds ratio:

O =

where B is the Bayes factor. When there is no a prior:
preference for either model, By = 1 of one indicates that
each model is equally likely to be correct, while By >
10 may be considered sufficient to accept the alternative
model (although that number should be greater if the
alternative model is controversial).



Parameter Estimation

One should speak of confidence or credible intervals or
regions rather than “errors.”

e A frequentist derives confidence intervals and regions.
e A Bayesians derives credible intervals and regions.

e An interval is a range (or ranges) of values of a pa-
rameter 6 that has probability p;,; of containing the
parameter’s true value 6,. (A region is simply the
multi-dimensional analogue of an interval.)

e A infinite number of intervals can be defined for a
given parameter: here, we’ll speak of intervals that
contain the most probable parameter values.
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Parameter Estimation

Instead of the integrated probability p;., many speak of
“numbers of ¢.” One can convert from no to pj using
the following equation:

1 +no x n
Pint = —=——/ dzexp (—22) = erf (\/5)

Pint o
68.3% 1.0
90.0% 1.6
95.5% 2.0
99.0% 2.6
99.7% 3.0

Note: this conversion between p;,; and o, while strictly
true only if the sampling distribution is a one-dimensional
Gaussian, is used by many astronomers in casual con-
versation regardless of the actual distribution shape or
dimensionality.



Parameter Estimation

e Tables showing Ay? as a function of integrated prob-
ability pi, and number of degrees of freedom v

N — P can cause confusion. For instance:

— “I have two free parameters in my model. Hence I
should compute 68.3% confidence intervals for each

parameter using Ax? = 2.30, right?”

. “NO.”
vV
Dint 1 2 3 4 5 6
63.3% 1.00 2.30 3.53 4.72 5.89 7.04
90%  2.71 4.61 6.25 7.78 9.24 10.6
95.4% 4.00 6.17 8.02 9.70 11.3 128
99%  6.63 9.21 11.3 13.3 15.1 16.8
99.73% 9.00 11.8 14.2 16.3 18.2 20.1
99.99% 15.1 184 21.1 23.5 25.7 278

Ax? as a Function of Confidence Level
and Degrees of Freedom
(Based on Press et al. 1986, p. 536.)

e To find the no confidence interval for one parameter,

use Ax? for v =1 (or n?).

e To find the no joint confidence region for m param-

eters, use Ay? for v = m.

e To find either an interval or region using the likelihood
function £, use Alogl = Ax?/2.



Parameter Estimation

Never project a (properly estimated) region onto a pa-
rameter axis to estimate an intervall This always over-
estimates the size of the interval.
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Frequentist Parameter Estimation

To determine confidence intervals and regions, a frequen-
tist generally must simulate and fit new datasets to deter-
mine the sampling distributions for each model parame-
ter.

o [f the true parameter values are unknown (which is
usually the case), then a grid of model parameter val-
ues should be constructed, with a large number of
datasets sampled at each grid point.

e But the usual choice is to appeal to asymptotic be-
havior and sample datasets using M (6). This method
may only be useful in limited circumstances, as > 100
datasets should be sampled and fit for accurate re-
sults.



Frequentist Parameter Estimation

One can estimate confidence intervals without having to
use simulations if the y? or log £ surface in parameter
space is “well-behaved,” 7.e. if

e the surface is approximately shaped like a multi-
dimensional paraboloid; and

e the best-fit point is sufficiently far from parameter-
space boundaries.

Three common ways of determining no intervals are:

e varying a parameter’s value, while holding the values
of all other parameters at their best-fit values, until

X = o
n2.
—log L =log L, - '%;

e the same as above, but allowing the values of all
other parameters are allowed to float to new best-
fit values; and

e computing n,/C; ;, where the covariance matrix C; ; =
I}, and I, the information matrix computed at the
best-fit point, is

1 0%y? d%log L

L, = - 2X .
77 200,00, O 96,00
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Figure 2: Example of a “well-behaved” statistical surface in parameter space, viewed as a
multi-dimensional paraboloid (x?, top), and as a multi-dimensional Gaussian (exp(—yx2/2) ~
L, bottom).
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Figure 3: On the right, 1, 2, and 30 contours determined for a statistical surface that is
not “well-behaved” in parameter space. With such a surface, rigorous parameter estimation
involves simulations (frequentist approach) or numerical integration of the surface (Bayesian
approach). From Freeman et al. (1999).



Frequentist Parameter Estimation

Things to keep in mind about these confidence inter-
val estimators (dubbed UNCERTAINTY, PROJECTION, and
COVARIANCE in Sherpa, respectively):

e The first method will always underestimate the inter-
val if the value of the parameter of interest is corre-
lated with other model parameter values.

e The second method (which is relatively slow) is in a
rigorous sense no more accurate than the third method
(which is fast), but it does provide a means of visual-
izing the statistical surface.

e A statistical surface is “well-behaved” if the second
and third methods give the same interval estimates.

e The condition that the best-fit point be sufficiently far
from parameter-space boundaries means that these
methods are not appropriate for determining upper
or lower limits.



Example with a Well-Behaved
Parameter Space

sherpa> fit

powll: v1.2

powll: initial function value = 8.22297E+01

powll: converged to minimum = 6.27050E+01 at iteration =
powll: final function value = 6.27050E+01

p.cO 56.2579
p.-cl 0.11117
p.c2 -0.00119999

sherpa> uncertainty
Computed for uncertainty.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound
p-cO 56.2579 -0.865564 +0.864461
p.cl 0.11117 -0.0148228 +0.0148038
p.c2 -0.00119999 -0.000189496 +0.000189222

sherpa> projection
Computed for projection.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound
p.cO 56.2579 -2.64465 +2.64497
p.cl 0.11117 -0.120684 +0.120703
p.c2 -0.00119999 -0.00115029 +0.00114976

sherpa> covariance
Computed for covariance.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound
p-cO 56.2579 -2.64786 +2.64786
p.cl 0.11117 -0.121023 +0.121023

p.c2 -0.00119999 -0.00115675 +0.00115675
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Confidence Region — Uncertainty
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Bayesian Parameter Estimation

A Bayesian estimates credible intervals and regions by
marginalizing (integrating) the parameter posterior dis-
tribution over the space of nuisance (uninteresting) pa-
rameters. For instance:

p(6:1D) = [, dbs -+ [, dbp p(6|D).

The central 68% of the distribution p(6;|D) is the lo
credible interval.

Marginalization may be done by brute-force integration
or, for higher dimensional problems (N z 10), by adaptive
integration. However, if the statistical surface is “well-
behaved,” one can also estimate credible intervals using
the Laplace Approximation:

p(61|D) = p(bs, - - -, 0p)(2m) 7D/ x
Jdet C(61, 85, - - -, 0p)L(61, 05, - - -, bp) .

If the value of parameter 6; is correlated with other pa-
rameter values, then when computing p(6:1|D), the values
of parameters (6s, - - -,0p) should be allowed to float to
new best-fit values.
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