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What is astrostatistics?
First: to summarize data, and obtain estimates and uncertainties of useful quantities

e.g., observed counts, count rates, fluxes, spectral shapes

while taking into account instrument sensitivities, noise fluctuations, and the circumstances of observation

this is to statistics what astrometry is to astrophysics

Second: a framework to ask the right question of the data, to obtain the best possible answer

what does it mean to detect a source?  what if a source is not detected?

is the source variable? how can you tell? how can you find where it changed intensity?

Third: a mechanism to understand how much your data are telling you, and wringing the most information 
out of them

how good is your model? (can you really fit a straight line to your data? should you include an extra line 
in your spectrum?)

how do you encode the complex chain of dependencies from theoretical model to what is actually 
observed? (temperature and density structure of a corona from spectral line intensities, black hole masses 
from time variability, acceleration of deconvolving 3D structure of a cluster from annular spectra)

how reliable are your results? where are the biases in the analysis? 

Caution: don’t blindly surrender scientific judgement!
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Statistical Tools in CIAO/Sherpa
❖ fit: non-linear minimization fitting

❖ conf/covar: uncertainty intervals and error bars

❖ resample_data: to get bootstrap distribution of model parameter draws when data errors are asymmetric

❖ bootstrap/sample_flux/sample_photon_flux/sample_energy_flux: with replacement/parametric bootstrap 
to get Monte Carlo distribution accounting for parameter uncertainties 

❖ get_draws: Markov Chain Monte Carlo (MCMC) engine pyBLoCXS (Bayesian Low-Counts X-ray Spectral 
analysis; van Dyk et al. 2001, ApJ 548, 224) 

❖ calc_mlr, calc_ftest: model comparison via Likelihood Ratio Test (LRT)/F-test

❖ plot_pvalue, plot_pvalue_results: to do posterior predictive p-value checks (Protassov et al. 2002, ApJ 571, 
545) 

❖ glvary: light curve modeling (Gregory & Loredo 1992, ApJ 398, 146)  

❖ celldetect/wavdetect/vtpdetect/mkvtpbkg: source detection in images 

❖ aprates: Bayesian aperture photometry also used in srcflux (Primini & Kashyap 2014, ApJ 796, 24) 

❖ the python interpreter in Sherpa gives access to python libraries, and can be used to call upon packages and 
libraries in R, which are written by statisticians for statisticians
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Outline
1. Photon Counts and the Poisson distribution

2. Gaussian distribution 

1. Likelihood and χ2

2. Poisson vs Gaussian

3. Error propagation

3. Fitting

1. Best fit

1. error bars

2. goodness of fit

3. cstat  

4. Monte Carlo methods

4. Tricky problems (if we have time)

1. Aperture photometry and Hardness Ratios

2. On statistical significance

3. Model comparison via F-test
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I  am not going to show how any 
of this is done in CIAO/Sherpa. 

I am only going to tell you what 
these things mean



1. Counts
❖ ACIS and HRC are photon counting detectors.  Events 

are recorded as they arrive, usually sloooowly

❖ What does this imply?

❖ Photons arrive uniformly at random times, so the 
time difference between them looks like an 
exponential distribution

❖ The number of counts in a given time interval is 
therefore described by a Poisson distribution
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Light curve of steady source HZ 43 binned at 1 sec

Notice: asymmetry, scatter around the mean



Distribution of counts in the light curve binned at 1 sec

Notice:
❖ asymmetry
❖ +ve integers
❖ distribution

Poisson likelihood



1. Poisson Likelihood

❖  

❖ The probability of seeing k events when λ are expected 

❖ e.g., λ = count rate × time interval ≡ r ⋅ Δt 

mean,  

variance, 

LPois = p(k |λ) =
1
k!

λke−λ

μ = ∑
k

k p(k |λ) = λ

σ2 = k̄2 − k̄2 = λ
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p(k|λ) for different λ



2. Gaussian

❖ A Gaussian distribution is convenient 

❖ Symmetric, ubiquitous (because of the Central Limit 
Theorem), easy to handle uncertainties 

LGauss = N(x; μ, σ2) =
1

σ 2π
e− (x − μ)2

2σ2
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2.1 Gaussian likelihood
❖ Probability of obtaining observed data given the model

 

❖ When you have several data points

 

                 

log Likelihood, 

p(x |θ, σθ) dx = N(x; θ, σ2
θ ) dx

p({xk} |θi) =
1

(2π)N/2
Πk

1
σk

e
− (xk − μk)2

2σ2
k

≡
1

(2π)N (Πk
1
σk ) exp [−∑

k

(xk − μk)2

2σ2
k ]

ln LGauss ∝ − ∑
k

(xk − μk)2

2σ2
k
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2.2 Poisson → Gaussian

❖ Variance of Poisson is = mean

❖ As λ↑ 

 

❖ Convenient!

Pois(k |λ) → N(k; λ, λ
2
)
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2.3 Gaussian Error Propagation
❖ How to propagate uncertainty from one stage to another — if , and  is known, what is 

 =?= 

❖ Simple case: if everything is distributed as a Gaussian, and has well-defined means and 
standard deviations, then at "best fit" values , 

 for all data points k=1..N and independent variables i 

and expand as Taylor series and sum over k to get to the 2nd order  

 where i, j are variables 

or ignoring correlations amongst the  

g = f(x) σx
σg f(σx)

ai g = g(ai)

σ2
g = ∑

i

1
N ∑

k

(gk(ai + δai) − gk(ai))2

σ2
g = ∑

i
∑

j

∂g
∂ai

∂g
∂aj

σaiaj

{ai}, σaiaj
= σ2

ai
δij

σ2
g ≈ ∑

i ( ∂g
∂ai )

2

σ2
ai
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2.3 Error Propagation
 

 
uncertainties scale (counts → count rate)  

 
 

converts to fractional error (luminosity → magnitude) 

 

 

 

fractional errors stay as they are (parallax → distance) 

 
 

errors square-add

g = C ⋅ a
→ σg = C ⋅ σa

g = ln(a)
→ σg =

σa

a

g =
1
a

→ σg =
1
a2

σa ≡
g
a

σa

⇒
σg

g
=

σa

a

g = a + b
→ σ2

g = σ2
a + σ2

b

 g = g(ai)

σ2
g = ∑

i ( ∂g
∂ai )

2

σ2
ai
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3.1 Fitting: Best-fit
❖ The best fit is one that maximizes the likelihood

❖ e.g., linear regression — 

solve by finding extremum of log likelihood

, with  

Notice: maximizing likelihood means minimizing sum-squared-residuals

,  and  

Notice notation: 

b̅a̅r̅ and ĥât ̂to indicate sample averages and best-fit values

Γρεεκ letters for model quantities, Roman for data quantities

yi = α + βxi + ϵ

ln L ∝ ∑
k

(yk − α − βxk)2 ∂ ln L
∂α

=
∂ ln L

∂β
= 0

̂β = Cov(x, y)/Var(x) ≡ ρ(x, y)
Var(x)
Var(y)

α̂ = ȳ − ̂βx̄

16VLK: CIAO Workshop ArAS SfA-5 2020 Oct 21



3.1.1Error Bars
❖ Covariance errors aka curvature errors aka inverse of the Hessian 

For Gaussian,   

i.e., compute curvature of log-likelihood surface at best fit and return its inverse as the variance 

+ easy 

– very approximate 

❖ Δχ² 

Difference from best-fit χ² value is itself a χ² distribution with dof=1, so look for percentiles of 
that distribution:  

Δχ²=+1 ≡ 68% (1σ) 

Δχ²=+2.71 ≡ 90% (1.6σ) 

+ better than curvature 

– gets complicated quickly if parameters are correlated

∂2 ln LGauss

∂x2
∝

1
σ2
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3.2 Fitting: Goodness-of-fit
❖ How good is the model as a description of your data?

❖ How can you tell when you do have a “good” fit?

❖  is called the chi-square,

 

❖ and its distribution describes the probability of getting  to match 
“similarly” for several bins 

❖ When the observed , the model is doing a good job of 
matching the data.  The farther it is from this range, the less likely it is that the 
model is a good description of the data 

❖ But always use your judgement, because this is a probabilistic rule! 

❖ Watch out for how  is defined (model variance is better)

−2 ln LGauss

χ2 = ∑
k

(xk − μk)2

σ2
k

(xk, yk)

χ2 ∼ dof ± 2 ⋅ dof

σ2
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3.3 Fitting: cstat
❖ Poisson log Likelihood: 

❖ Apply Stirling’s approximation,  

❖  

❖ Just as χ² is , 

cstat  

where  are observed counts, and  are model predicted counts in bin i 

❖ Watch out: cstat is only asymptotically χ², not quite the Poisson likelihood, 0s 
are thrown away, background must be explicitly modeled 

❖ unbiased for low counts than χ², asymptotically χ², rudimentary goodness-of-fit 
exists (Kaastra 2017, A&A 605, A51) 
[AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/cstat_vs_chisq_SimsNotebook.ipynb  

[AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/data_for_cstat_vs_chisq_SimsNotebook.tar.gz 

ln LPois = − ln Γ(k + 1) + k ln λ − λ

ln Γ(k + 1) ≈ k ln k − k

ln LPois ≈ k ⋅ (ln λ − ln k) + (k − λ)

−2 ln LGauss

= 2∑
i

Mi − Di + Di ⋅ (ln Di − ln Mi)

Di Mi

19VLK: CIAO Workshop ArAS SfA-5 2020 Oct 21

https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/cstat_vs_chisq_SimsNotebook.ipynb
https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/data_for_cstat_vs_chisq_SimsNotebook.tar.gz
https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/cstat_vs_chisq_SimsNotebook.ipynb
https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/data_for_cstat_vs_chisq_SimsNotebook.tar.gz


Handbook of X-ray Astronomy (Arnaud, Smith, Siemiginowska): https://doi.org/10.1017/CBO9781139034234.008

https://doi.org/10.1017/CBO9781139034234.008
https://doi.org/10.1017/CBO9781139034234.008


Handbook of X-ray Astronomy (Arnaud, Smith, Siemiginowska): https://doi.org/10.1017/CBO9781139034234.008

https://doi.org/10.1017/CBO9781139034234.008
https://doi.org/10.1017/CBO9781139034234.008


3.4 Monte Carlo

❖ If all else fails, use a computer with a good random 
number generator
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3.4.1 Bootstrap
❖ How to estimate the uncertainty within almost any set of measurements

❖ Steps: 

1. construct summary statistic

2. extract random sample of same size from original dataset and recompute 
summary statistic from Step 1

3. repeat Step 2 a large number of times and compute mean and variance of 
summary statistic

❖ Quick and easy

❖ Accurate, if sample in hand is a good representation of population (e.g., don’t try this 
with power-laws)

❖ There are several tools in Sherpa that lets you use some kind of Bootstrapping to 
estimate uncertainties: resample_data, sample_energy_flux, sample_photon_flux

23VLK: CIAO Workshop ArAS SfA-5 2020 Oct 21



3.4.2 Markov Chain Monte Carlo
❖ What is it?

❖ A method to quickly explore high-dimensional parameter spaces and obtain 
representative measures of parameter values and uncertainties

❖ Why do it?

❖ Robust, insensitive to starting conditions, easy to code

❖ How does it work?

❖ Compute the likelihood for given parameter values, get a new, randomly 
drawn value, and compare the new likelihood to the old one

❖ If it improves the likelihood, accept the new value and repeat the cycle

❖ If it does not improve the likelihood, accept with a probability equal to the 
ratio, else reject and get a new value
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3.4.2 MCMC in Sherpa
❖ stats, accept, params = get_draws(niter=) 

❖ Based on the BLoCXS [Bayesian Low-Counts X-ray Spectral] analysis 
algorithm of van Dyk et al. 2001, ApJ 548, 224

❖ only works with cstat/cash 

❖ set up data and model as you would for a regular Sherpa fit, then 
run get_draws.

❖ samplers: MetropolisMH, MH, PragBayes

❖ priors: default is to use flat prior between model min/max; use 
set_prior to associate specific models

❖ There is a thread:
http://cxc.harvard.edu/sherpa/threads/pyblocxs/
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Statistical Tools in CIAO/Sherpa
❖ fit: non-linear minimization fitting

❖ conf/covar: uncertainty intervals and error bars

❖ resample_data: to get bootstrap distribution of model parameter draws when data errors are asymmetric

❖ bootstrap/sample_flux/sample_photon_flux/sample_energy_flux: with replacement/parametric bootstrap 
to get Monte Carlo distribution accounting for parameter uncertainties 

❖ get_draws: Markov Chain Monte Carlo (MCMC) engine pyBLoCXS (Bayesian Low-Counts X-ray Spectral 
analysis; van Dyk et al. 2001, ApJ 548, 224) 

❖ calc_mlr, calc_ftest: model comparison via Likelihood Ratio Test (LRT)/F-test

❖ plot_pvalue, plot_pvalue_results: to do posterior predictive p-value checks (Protassov et al. 2002, ApJ 571, 
545) 

❖ glvary: light curve modeling (Gregory & Loredo 1992, ApJ 398, 146)  

❖ celldetect/wavdetect/vtpdetect/mkvtpbkg: source detection in images 

❖ aprates: Bayesian aperture photometry also used in srcflux (Primini & Kashyap 2014, ApJ 796, 24) 

❖ the python interpreter in Sherpa gives access to python libraries, and can be used to call upon packages and 
libraries in R, which are written by statisticians for statisticians
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Some good reads
❖ Larry Bretthorst (1988), Bayesian Fourier analysis, https://bayes.wustl.edu/glb/book.pdf

❖ Tom Loredo (1990), monograph on neutrinos from 87A, http://hosting.astro.cornell.edu/staff/loredo/bayes/L90-LaplaceToSN1987A-
scan.pdf

❖ Jogesh Babu & Eric Feigelson (1996), Astrostatistics, Chapman and Hall, London 

❖ Larry Wasserman (2006), All of Non-Parametric Statistics, http://www.stat.cmu.edu/~larry/all-of-nonpar/ 

❖ Rasmussen & Williams (2006), Gaussian Processes for Machine Learning, http://www.gaussianprocess.org/gpml/  

❖ Eric Feigelson & Jogesh Babu (2012), Modern Statistical Methods for Astronomy with R Applications, https://
astrostatistics.psu.edu/MSMA/

❖ Arnaud, Smith, & Siemiginowska (2011), Handbook of X-ray Astronomy, http://hea-www.cfa.harvard.edu/~rsmith/
xrayastronomyhandbook/

❖ Phil Gregory (2012), Bayesian Logical Data Analysis for Physical Sciences, https://www.cambridge.org/core/books/bayesian-logical-
data-analysis-for-the-physical-sciences/09E9A95DAE275F5B005676C71B542598 

❖ Andrew Gelman et al. (2013), Bayesian Data Analysis, http://www.stat.columbia.edu/~gelman/book/BDA3.pdf  

❖ Edward Robinson (2016), Data analysis for scientists and engineers, https://press.princeton.edu/titles/10911.html

❖ Jacob VanderPlas (2018),  ApJS 236, 16, Understanding the Lomb-Scargle Periodogram, https://iopscience.iop.org/article/
10.3847/1538-4365/aab766/pdf

❖ Josh Speagle (2019), A Conceptual Introduction to Markov Chain Monte Carlo Methods, arXiv:1909.12313

❖ Vinay Kashyap (2020), Basics of Astrostatistics, Chapter 6 in Tutorial Guide to X-ray and Gamma-ray Astronomy Data 
Reduction and Analysis 2020 Editor Cosimo Bambi Springer ISBN 978-981-15-6337-9, https://hea-www.harvard.edu/~kashyap/
Kashyap_2020_Ch6_in_TutorialGuideToX-
rayAndGammaRayAstronomyDataReductionAndAnalysis_2020_Ed_CosimoBambi_Springer_ISBN_978-981-15-6337-9.pdf 
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Extra



4. Tricky Problems

1. Aperture photometry and Hardness Ratios

2. On statistical significance

3. Model comparison with F-test



4.1 Aperture photometry and Hardness Ratios

❖  counts in a source region,  counts in a 
background region of area  times larger

❖ What is the intensity  of the source?

❖ For strong sources and large counts, OK to do 

 

❖ Better: model the intensity as due to a Poisson 
distribution that leads to the observed number of 
counts,

Then compute probability distribution of 

❖ This is how aprates (in srcflux) works

NS NB
r

fS

fS ≈ NS −
NB

r

NB ∼ Pois(r ⋅ fB) & NS ∼ Pois( fS + fB)

p( fS |NS, NB, r)

NS

NB



4.1 Aperture photometry and Hardness Ratios

❖  is a complete description of our knowledge about the 
brightness of the source conditional on the observed counts

❖ The width of this distribution is a measure of the uncertainty on 

❖ Works even for  and 

❖ This is a highly flexible framework.  If there are counts collected in 
different bands ,

They can be combined (see Park et al. 2006, ApJ 652, 610) to compute 

hardness ratios like  or 

❖ This is how hardness ratios are computed in the CSC.

p( fS |NS, NB, r)

fS
NS = 0 NB = 0

{(NSsoft
, NBsoft

), (NShard
, NBhard

), r}

HR =
fhard − fsoft

fhard + fsoft
C = log

fsoft

fhard



4.2 On Statistical Significance
❖ You often hear people talk about the statistical significance of a result, as a detection being 

">3σ", that something is significant because "p<0.05"

❖ A p-value is how far out in the tail of a distribution a measured or computed value 
falls.  It’s the fractional area under the distribution that exceeds the specified value.

❖ The smaller the p-value, the more extreme of a fluctuation is necessary for the 
underlying distribution to have generated it

❖ This is a useful construct, but also dangerous



4.2 On Statistical Significance

❖ This is a useful construct, but also dangerous

❖ Useful because there is an implicit comparison to a so-called null distribution and is a 
measure of how unlikely it is to get the observed data as a statistical fluctuation from that 
null or background distribution

❖ Dangerous because it is prone to misinterpretation.  All it describes is the integrated tail 
probability (also called the p-value) of the null distribution.  A 3  detection means there is no 
more than a 0.3% chance that the observed result can be got from the background.  This does 
not prove that a source exists, nor does it mean a background fluctuation can be ruled out.

σ



4.3 Model Comparison

34

–John von Neumann, via Enrico Fermi to Freeman Dyson

"With four parameters I can fit an elephant, and 
with five I can make him wiggle his trunk."
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Mayer, J., Khairy, K., & Howard, J., 2010, Am.J.Phys.Teach. 78, 648



4.3 Model Comparison via F-test
❖ Did using a more complicated model make for a better fit?  Is adding an extra 

parameter justified?

❖ The F-Test looks at the change in χ² given the degrees of freedom and returns a 
p-value for how far in the tail of the null distribution the observed change is.  

❖ But it makes several regularity assumptions that precludes some obvious astro 
applications like determining whether a line exists in a spectrum (information 
matrix must exist and be differentiable):

❖ simpler model must be a proper subset of the complex model

❖ the simpler model cannot be at the boundary of the complex model

❖ The F-Test could underestimate true significance for emission lines (missing 
weaker ones), or find non-existent absorption lines
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4.3 Model Comparison via F-test
❖ See Protassov et al. 2002, ApJ 571, 545 for a "workaround" using 

posterior predictive p-value checks

❖ Basic procedure:

1.Simulate several datasets from simple model

2.Fit both simple and complex models to the datasets

3.Compute the statistic of interest and construct an empirical 
distribution

4.Compare measured value of statistic to empirical distribution 
and compute approximate p-value
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Extra Extra



Jargon
❖ Probability, p(⋅) — frequency of occurrence or degree of belief

❖ Likelihood, L(θ|D) ≡ p(D|θ) — probability of seeing these data given model

❖ Prior π(θ) — a priori probability of model θ before data are acquired

❖ λ often used for source intensity (Greek for model, Roman for data quantities)

❖ γ(α,β) is the gamma distribution, N(µ,σ²) is the Gaussian, Γ(N+1)=N!  

❖ χ² — measure of closeness, also goodness of fit ≡ –2 ln(Gaussian likelihood)

❖ cstat/cash ≡ –2 ln(Poisson Likelihood)

❖ p-value — one-sided tail probability of a distribution

❖ Null distribution — what you expect in the absence of a signal
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3.4.2 MCMC Jumping Rules
❖ Metropolis: transition probability  between  and  is symmetric and reversible, 

❖  

❖ Set  with probability , otherwise 

❖ Metropolis-Hastings: transition probability  does not have to be symmetric, but is 
instead included in the jumping rule so transitions remain symmetric and reversible

❖
 

❖ Gibbs: sample one parameter conditional on all the others, equivalent to jumps in one 
element of a vector

❖  if , 0 otherwise

❖ etc.

❖ Adaptive MCMC, HMC, Ancillary-Sufficiency Interweaving, Down-Up MH

Jt θa θb
Jt(θa |θb) = Jt(θb |θa)

r =
p(θ* |y)

p(θt−1 |y)

θt ← θ* min(r,1) θt ← θt−1

Jt

r =
p(θ* |y)/Jt(θ* |θt−1)

p(θt−1 |y)/Jt(θt−1 |θ*)

Jt(θ* |θt−1) = p(θ*j |θt−1
−j , y) θ*−j = θt−1

−j
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3.4.2 MCMC Theory and Practice
❖ Why does MCMC work?  Consider  and  such that 

 #by Bayes 

 

 

∴ joint distribution of  and  is symmetric, hence both have the same marginal distributions, so  
is the stationary distribution of the Markov chain of .

❖ Convergence is guaranteed, but not at a specified number of iterations.

❖ Practical MCMC

❖ Run many chains, make trace plots, make scatter plots, make contour plots

❖ optimal acceptance rate is ≈20%, less for higher dimensions (more means you are taking steps that are 
too small, your sample will be highly correlated)

❖
compute effective sample sizes, , where  is the lag-1 autocorrelation

❖ check for convergence: compute Gelman-Rubin  statistic, the sqrt ratio of the combined within-chain 
(average of variances of each chain) and between-chain variance (variance of averages) to within-chain 
variance, should approach 1 if all chains converge

θa θb p(θb |y) > p(θa |y)

p(θt−1 = θa, θt = θb) = p(θa |y) Jt(θb |θa)

= p(θa |y)
p(θb |y)
p(θb |y)

Jt(θb |θa) = p(θb |y)
p(θa |y)
p(θb |y)

Jt(θa |θb)

= p(θb |y) Jt(θb |θa) r = p(θt = θa, θt−1 = θb)

θt θt−1 p(θ |y)
θ

Neff = N
1 − ρ
1 + ρ

ρ

R̂
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2. Distributions
❖ Binomial — one or the other, with probability  // enclosed energy fractions

 of one out of a total of , 

❖ Poisson — events occur randomly // photon counts

 

❖ Gaussian (aka Normal)— all summary statistics that have a sufficiently large 
sample

 

❖ Gamma — continuous variable conjugate to Poisson

, ; Poisson for  and 

ρ

k N p(k |N, ρ) = NCk ρk(1 − ρ)N−k

p(k |θ) =
1
k!

θke−θ

f(x; μ, σ2) =
1

σ 2π
e− (x − μ)2

2σ2

p(x; α, β) =
βα

Γ(α)
xα−1e−βx (x, α, β) ≥ 0 β = 1 α = k + 1
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2. Distributions (contd.)
❖ χ² — measure of similarity and distance between 

samples (what is the chance that separate Gaussian 
distributions together have a given χ²)

 p(χ2 |n) =
2− n

2

( n
2 − 1)!

(χ2)n − 2
2 e− χ2

2

∝ (χ2) n
2 −1e− χ2

2 ≡ γ(χ2;
n
2

, −
1
2

)
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2. Distributions (contd.)
❖

tν — distribution of  when sample size N is ν+1 

❖ the ratio of Normal and √χ²

❖ is also Loretzian (when you set ν=1), Cauchy, Beta profile

 

 

For ν≳7 the tν-distribution approaches a Gaussian.

̂μ − μ
̂σ ̂μ

p(t |ν) ∝ K(ν) ⋅ [1 +
t2

ν ]
− ν + 1

2

K(ν) =
1

νπ

[ ν − 1
2 ]!

[ ν − 2
2 ]!
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4.1.1 Basics of Bayesian Analysis

❖ Mathematical model of probability calculus

❖ Deals with specifying parametric models, and computing 
probabilities and updating them conditional on observed data

❖ Jargon: p(A|B) is the conditional probability that A is true given B.

❖ Axioms
❖ Product rule for "A and B": p(AB) = p(A|B) ⋅ p(B)

❖ Sum rule for "A or B": p(A+B) = p(A) + p(B) – p(AB)

45
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(Alt) Sum Rule
p(A+B) = p(A) + p(B) – p(AB)  

[1] C=A+B ⇒ p(C) = 1 - p(C̅) 

[2] = 1 – p(A̅B̅) = 1 – p(A̅) p(B̅|A̅) 

[1] = 1 – p(A̅) (1 – p(B|A̅)) = 1 – p(A̅) + p(A̅) p(B|A̅)  

[2] = p(A) + p(A̅B) = p(A) + p(B) p(A̅|B) 

[1] = p(A) + p(B) (1 – p(A|B)) = p(A) + p(B) – p(B) p(A|B) 

[2] = p(A) + p(B) – p(AB)



4.1.2 Consider Aperture Photometry
• Say fS and fB are the intensities 

of the source and background

• Measure counts:

• NS counts in the source 
region

• NB counts in background 
region whose area is r× 

source region area

• Goal: compute p(fS|NS,NB,r)

47

NS

NB

NS ~ Poisson(µS=fS+fB) 

NB ~ Poisson(µB=r⋅fB)
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4.1.3 Coordinate transformations
NS ~ Pois(µS) and NB ~ Pois(µB), with µS=fS+fB and µB=r⋅fB 

The joint distribution of the parameters 

p(µS,µB|NS,NB,r) dµS dµB = p(fS,fB|NS,NB,r) J(µS,µB;fS,fB) dfS dfB 

J(µS,µB;fS,fB) =                                =                      = r 

p(µS,µB|NS,NB,r) dµS dµB = p(fS,fB|NS,NB,r) r dfS dfB

48

∂μS/∂fS ∂μB/∂fS

∂μS/∂fB ∂μB/∂fB

1 0

1 r
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4.1.4 Bayes’ Theorem

p(AB) = p(A|B)⋅p(B) 

≡ p(B|A)⋅p(A) 

⇒ p(A|B) = p(B|A)⋅p(A)/p(B) 

p(θ|D) = p(D|θ) p(θ) / p(D) 

p(θ|D) ∝ p(D|θ) p(θ)

49

p(µS,µB|NS,NB,r)  

= p(µS|µB,NS,NB,r) ⋅ p(µB|NS,NB,r) 

= p(µS|NS) ⋅ p(µB|NB,r) 

→ apply Bayes’ Theorem → 

∝ p(NS|µS)⋅p(µS) ⋅ p(NB|µB,r)⋅p(µB)
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(digression) Uncertainty Interval

• p(Θ|D) describes the uncertainty on Θ 

• Usually reported as 68% or 95% central intervals because 
they correspond to 1σ or 2σ for a Gaussian 

(always say what they are!) 

• For Bayesian credible intervals, no guarantee of good 
coverage properties (because of priors), unlike frequentist 
confidence intervals 

 (“the true value is contained 95% of the time for CIs 
calculated in this manner when the experiment is repeated”)
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(digression) Error Bars vs Limits

• Uncertainty intervals are not limits 

• Intervals are defined by the bounds that account for the 
specified area under p(Θ|D) — there are an infinite number of 
possible intervals 

• Limits are defined by a process of thresholding — you get an 
upper limit to the intensity by looking at how bright a source 
could have been and still not be detected
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4.1.5 Marginalization

   dµS dµB  

× p(NS|µS) 

× p(µS)  

× p(NB|µB,r)  

× p(µB)

52

   dµS dµB  

× [µSNS e–µS / Γ(NS+1)] 

× [βSαS e–βSµS / Γ(αS)] 

× [µBNB e–µB / Γ(NB+1)]  

× [βBαB e–βBµB / Γ(αB)]

   r  dfS   dfB 

× (fS+fB)NS e–(fS+fB) /Γ(NS+1) 

× βSαS e–βS(fS+fB) /Γ(αS) 

× (rfB)NB e–rfB / Γ(NB+1)  

× βBαB e–βBrfB /Γ(αB) 

 ∫ 

p(µS,µB|NS,NB,r) dµS dµB  ∝ p(NS|µS) p(µS) ⋅ p(NB|µB,r) p(µB) dµS dµB 

Marginalize/Integrate over
uninteresting nuisance parameters
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4.1.6 conceptually simple, computationally complex

p(fS|NS,NB,r) dfS  

= r dfS  ∫ dfB (fS+fB)NS e–(fS+fB) /Γ(NS+1) ⋅ βSαS e–βS(fS+fB) /Γ(αS) ⋅ 

(rfB)NB e–rfB / Γ(NB+1) ⋅ βBαB e–βBrfB /Γ(αB) 

for uninformative priors [αSB=1,βSB=0] 

∝ dfS  ∑k=0:NS Z(NS,NB,k) fSk e–fS (1+r)–(NS+NB–k+1) 

Z(NS,NB,k,j) = Γ(NS+NB–k+1)/[Γ(NS–k+1)Γ(k+1)]
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4.2 Watch out
❖ asymptotic validity — be aware of the assumptions made to get easy 

analytical results (e.g., p-value for F-test, χ² as measure of goodness)

❖ convergence, stopping rules, effect of priors — always do sensitivity tests 

❖ overfitting — to avoid fitting fluctuations in the data, balance bias against 
variance

❖ p-values — measure of how far in the tail of a distribution the current 
observation is, not a proof of the validity of an alternative hypothesis, nor 
of the falsity of the null hypothesis

❖ Type I, Type II, Type S, Type M errors — false positive, false negatives, 
sign errors on weak effects, Eddington Bias
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Distribution of counts in the light curve binned at 0.5 sec

p=0.11

p=0.006 p=0.0015
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4.2 Warning: Hypothesis Tests
• Compare distributions by setting up competing hypotheses 

• Null hypothesis H0 is that both samples are drawn from the 
same distribution 

• Calculate a statistic from the data and compare to the 
expected distribution of the statistic.  If calculated value 
exceeds a critical threshold, you may reject — not disprove, 
but reject — the null hypothesis. 

• Important to decide on the statistic and the threshold before 
the experiment or observational study is conducted
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4.2.1 Types of Error
❖ Type I — false positives, when you claim a detection over a 

background because of a fluctuation above some threshold

❖ Type II — false negatives, when you fail to detect an event 
because its response fell below the detection threshold

❖ Type M — an incorrect estimation of the size of the effect because 
large fluctuations are preferentially detected (cf. Eddington bias)

❖ Type S — an incorrect estimation of the sign of a weak effect 
because of fluctuations in the wrong direction
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58 Kashyap et al 2010

4.2.1 Warning: Type I & II Errors

Digression: get Upper Limit by controlling β
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4.2.1 Warning: Type S Errors
Suppose you want to detect 
an effect λ≠100 at 2σ
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Eddington, A.S., 1913, MNRAS, 73, 359, On a formula for correcting 
statistics for the effects of a known error of observation

Kashyap 2001, Power of wavdetect60

4.2.1 Warning: Type M (Eddington)
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4.3.1 Warning: Kolmogorov-Smirnov

❖ Are two samples drawn from different distributions? 

❖ Computes cumulative distribution for both, then computes the p-value for 
the observed maximum distance between them 

❖ Alternative methods exist, but are usually narrower in applicability and not 
unique in higher D 

❖ Pros: easy to use, distribution-free p-values, unambiguous in 1-D, no 
restriction on sample size 

❖ Cons: prone to misuse (do not use as a way to estimate parameters), not 
very powerful, insensitive to differences near the ends, limited to 1-D 

❖ [https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test]
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