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Outline 
Statistics is more than just means and standard deviations
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2. Gaussian 

1. Likelihood and χ2

2. Poisson vs Gaussian

3. Error propagation

3. Fitting

1. Best fit

2. goodness of fit

3. cstat  
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1. Counts

❖ ACIS and HRC are photon counting detectors.  Events 
are recorded as they arrive, usually sloooowly

❖ What does this imply?
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Light curve of steady source HZ 43 binned at 1 sec

Notice: asymmetry, scatter around the mean



Distribution of counts in the light curve binned at 1 sec

Notice:
❖ asymmetry
❖ +ve integers
❖ distribution

Poisson likelihood



1. Poisson Likelihood

❖ p(k|θ) = (1/k!) θᵏ e–θ 

❖ The probability of seeing k events when θ are expected 

❖ e.g., θ = count rate × time interval ≡ r ⋅ Δt 

❖ mean, µ = ∑k k p(k|θ) = θ 

❖ variance, σ² = k̅²̅ – k̅
2
 = θ
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p(k|θ) for different θ



2. Gaussian

❖ A Gaussian distribution is convenient 

❖ Symmetric, ubiquitous (because of the Central Limit 
Theorem), easy to handle uncertainties 

❖ N(x;µ,σ²) = [1/σ√2π] e 
–(x-µ)²/2σ²
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2.1 likelihood

❖ Probability of obtaining observed data given the model

p(x|θ,σθ) dx = N(x; θ,σθ²) dx 

❖ When you have several data points

p({xi}|θi) = (2π)–N/2 Πk σk–1 e–(xk-µk)²/2σk²  

= (2π)–N/2 (Πk σk–1) exp[–∑k(xk-µk)²/2σk²] 

❖ log Likelihood ∝ –∑k (xk-µk)² / 2σk²
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2.2 Poisson -> Gaussian

❖ Variance of Poisson is = mean

❖ As θ↑ 

Pois(k|θ) → N(k;θ,(√θ)²)

❖ Convenient!
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Poisson(k|θ) → N(θ,θ) as θ↑



2.3 Error Propagation

❖ How to propagate uncertainty from one stage to another 
— if g=f(x), and σx is known, what is σg =?= f(σx)

❖ Simple case: if everything is distributed as a Gaussian, 
and has well-defined means and standard deviations,

❖ g = g(ai) ⇒ σ²g = ∑i (∂g/∂ai)2 σ²ai 
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2.3 Error Propagation
g = C ⋅ a  

→ σg = C ⋅ σₐ  
uncertainties scale 

g = ln(a) 
→ σg = σₐ/a  
converts to fractional error 

g = 1/a  
→ σg = (1/a2) σa ≡ (g/a) σa  
⇒ σg/g = σₐ/a 
fractional errors stay as they are 

g = a + b  
→ σ²g = σ²a + σ²b 
errors square-add

g = g(ai) 

σ²g = ∑ᵢ (∂g/∂aᵢ)² σ²ai 
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3.1 Best-fit
❖ The best fit is one that maximizes the likelihood

❖ e.g., linear regression — yi = α + β xi + ε

solve by finding extremum of log likelihood

lnL ∝ ∑k (yk – α – βxk)²  

∂lnL/∂α = ∂lnL/∂β = 0 

⇒ α̂ = y̅ – β̂ x̅ and β̂ = Cov(x,y)/Var(x)

Notice notation: 

\b̅a̅r̅ and \ĥât ̂to indicate sample averages and best-fit values

Γρεεκ letters for model quantities, Roman for data quantities
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3.2 Goodness-of-fit
❖ How good is the model as a description of your data?

❖ How can you tell when you do have a “good” fit?

❖ Recall the log Likelihood — its -ve is called the chi-square,

❖ χ² = ∑k (xk-µk)² / 2σk² 

❖ and its distribution describes the probability of getting (xk,yk) to match 
“similarly” for several bins 

❖ When observed χ² ∼ dof±√2√dof, model is doing excellent job of matching 
the data.  The farther it is from this range, the less likely it is that the model 
is a good description of the data 

❖ But always use your judgement, because this is a probabilistic rule! 

❖ Watch out for how σ2 is defined (model variance is best)
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3.3 cstat
❖ Poisson log Likelihood: –lnΓ(k+1) + k⋅ lnθ – θ

❖ Apply Stirling’s approximation, lnΓ(k+1)=klnk–k  

❖ lnPoissonLikelihood = k⋅(lnθ – lnk) + (k – θ) 

❖ Just as χ² is -2lnLikelihood, 

❖ cstat = 2 ∑i (Mi - Di + Di ⋅ (lnDi – lnMi))  

❖ where Di are observed counts, and Mi are model predicted counts in bin i 

❖ unbiased for low counts than χ², asymptotically χ², rudimentary 
goodness-of-fit exists (Kaastra 2017, A&A 605, A51)

❖ Watch out: only asymptotically χ², not quite the Poisson likelihood, 0s 
are thrown away, background must be explicitly modeled
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4. Statistical Tools in CIAO/Sherpa
❖ fit: non-linear minimization fitting

❖ conf/covar/projection/int_proj/reg_proj: uncertainty intervals and error bars

❖ sample_flux: parametric bootstrap to get model fluxes 

❖ get_draws: MCMC engine pyBLoCXS (Bayesian Low-Counts X-ray Spectral analysis; van Dyk 
et al. 2001, ApJ 548, 224) 

❖ calc_ftest: model comparison via F-test

❖ plot_pvalue, plot_pvalue_results: to do posterior predictive p-value checks (Protassov et al. 
2002, ApJ 571, 545) 

❖ glvary: light curve modeling (Gregory & Loredo 1992, ApJ 398, 146)  

❖ celldetect/wavdetect/vtpdetect/mkvtpbkg: source detection in images 

❖ aprates: Bayesian aperture photometry (Primini & Kashyap 2014, ApJ 796, 24) 

❖ the python interpreter in Sherpa gives access to python libraries, and can be used to call upon 
packages and libraries in R, which are written by statisticians for statisticians
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