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Now, Shifting Gears...

A model M has been fit to dataset D and either the maxi-
mum of the likelihood function £,,.«, the minimum of the
x* statistic x2. , or the mode of the posterior distribution
p(0|D) has been determined. What comes next?

e Model Comparison. The determination of which of a
suite of models (e.g. blackbody, power-law, etc.) best
represents the data.

e Parameter Estimation. The characterization of the
sampling distribution for each best-fit model parame-
ter (e.g. blackbody temperature and normalization),
which allows the errors (i.e. standard deviations) of
each parameter to be determined.

e Publication!

Here, we cannot ignore the frequentist/Bayesian divide.
Hence we will discuss how frequentists and Bayesians
would complete these tasks, separately...




Frequentist Model Comparison

Two models, My and Mj, have been fit to D. M,,
the “simpler” of the two models (generally speaking, the
model with fewer free parameters) is the null hypothesis.

A frequentist would compare these models by:

e constructing a test statistic 1" from the best-fit statis-
tics of each fit (e.g. Ax* = x5 — X});

e determining each sampling distributions for T,
p(T|My) and p(T|My);

e determining the significance, or Type I error, the
probability of selecting M; when M, is correct:

a = [ dTp(T|My):;

obs

e and determining the power, or Type II error, which is
related to the probability 3 of selecting My when M;
1s correct:

1—B = [° dTp(T|M).

= If v is smaller than a pre-defined threshold (< 0.05, or
< 107, ete., with smaller thresholds used for more con-
troversial alternative models), then the frequentist rejects
the null hypothesis.

= If there are several model comparison tests to choose
from, the frequentist uses the most powerful one!
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Figure 1: Comparison of distributions p(7T'|Mp) (from which one determines the significance
a) and p(T|M;) (from which one determines the power of the model comparison test 1 — 3
(Eadie et al. 1971, p. 217).



Frequentist Model Comparison

Standard frequentist model comparison tests include:

e The x* Goodness-of-Fit (GoF) test:

oo = [o dpOCIN = Ry)

min,

1 - Y 2 2
e dy? | 2 T
ZF(%) /Xr2nin,0 X ( 2 ) ©

e The Maximum Likelihood Ratio (MLR) test:
X 2MLR = /Ao;z dX2p(AX2|AP>,

where AP is the number of additional freely varying
model parameters in model Mj.

e The F-test:
ar = [, dF p(F|AP,N — P)
(N — P AP)
— I N-Py ) 9
N-—P,+(AP)F 2 2

where P; is the total number of thawed parameters in
model M;, I is the incomplete beta function, and F
is the F'-statistic

A 2 2

AP" (N — P)

These are standard tests because they allow estimation
of the significance without time-consuming simulations!



Frequentist Model Comparison

Notes and caveats regarding these standard tests:

e The GoF' test is an “alternative-free” test, as it does
not take into account the alternative model M;. It is
consequently a weak (i.e. not powerful) model com-
parison test and should not be used!

e Only the version of the F-test which generally has the
greatest power is shown above: in principle, one can
construct three F' statistics out of x3, x%, and Ax?.

e The MLR ratio test is generally the most powertul for
detecting emission and absorption lines in spectra.

But the most important caveat of all is that...




Frequentist Model Comparison

The F' and MLR tests are commonly misused by as-
tronomers! There are two important conditions that must
be met so that an estimated derived value « is actually
correct, i.e. so that it is an accurate approximation of
the tail integral of the sampling distribution (Protassov

et al. 2001):

e )My must be nested within M, 7.e. one can obtain M,
by setting the extra AP parameters of M, to default
values, often zero; and

e those default values may not be on a parameter space
boundary.

The second condition may not be met, e.g., when one
is attempting to detect an emission line, whose default
amplitude is zero and whose minimum amplitude is zero.
Protassov et al. recommend Bayesian posterior predictive
probability values as an alternative, but a discussion of
this topic is beyond the scope of this class.

If the conditions for using these tests are not met, then
they can still be used, but the significance must be com-
puted via Monte Carlo simulations.




Bayesian Model Comparison

In the previous class, we showed how Bayes’ theorem is
applied in model fits. It can also be applied to model
comparison:
p(D|M)

p(D)
e p(M) is the prior probability for M;

p(M|D) = p(M)

e p(D) is an ignorable normalization constant; and
e p(D|M) is the average, or global, likelihood:

p(D|M) = [d8p(6|M)p(D|M,0)
= [dop(6|M)L(M,0).

In other words, it is the (normalized) integral of the
posterior distribution over all parameter space. Note
that this integral may be computed numerically, by
brute force, or if the likelihood surface is approxi-
mately a multi-dimensional Gaussian (i.e. if £ o
exp|—x?*/2]), by the Laplace approzimation:

p(DIM) = pB|M)2m)"*/detC Loy ,

where C' is the covariance matrix (estimated numeri-
cally at the mode).



Bayesian Model Comparison

To compare two models, a Bayesian computes the odds,
or odds ratio:

O =

where B is the Bayes factor. When there is no a prior:
preference for either model, By = 1 of one indicates that
each model is equally likely to be correct, while By >
10 may be considered sufficient to accept the alternative
model (although that number should be greater if the
alternative model is controversial).



Parameter Estimation

One should speak of confidence or credible intervals or
regions rather than “errors.”

e A frequentist derives confidence intervals and regions.
e A Bayesians derives credible intervals and regions.

e An interval is a range (or ranges) of values of a pa-
rameter 6 that has probability p;,; of containing the
parameter’s true value 6,. (A region is simply the
multi-dimensional analogue of an interval.)

e A infinite number of intervals can be defined for a
given parameter: here, we’ll speak of intervals that
contain the most probable parameter values.
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Parameter Estimation

Instead of the integrated probability p;., many speak of
“numbers of ¢.” One can convert from no to pj using
the following equation:

1 +no x n
Pint = —=——/ dzexp (—22) = erf (\/5)

Pint o
68.3% 1.0
90.0% 1.6
95.5% 2.0
99.0% 2.6
99.7% 3.0

Note: this conversion between p;,; and o, while strictly
true only if the sampling distribution is a one-dimensional
Gaussian, is used by many astronomers in casual con-
versation regardless of the actual distribution shape or
dimensionality.



Parameter Estimation

e Tables showing Ay? as a function of integrated prob-
ability pi, and number of degrees of freedom v

N — P can cause confusion. For instance:

— “I have two free parameters in my model. Hence I
should compute 68.3% confidence intervals for each

parameter using Ax? = 2.30, right?”

. “NO.”
vV
Dint 1 2 3 4 5 6
63.3% 1.00 2.30 3.53 4.72 5.89 7.04
90%  2.71 4.61 6.25 7.78 9.24 10.6
95.4% 4.00 6.17 8.02 9.70 11.3 128
99%  6.63 9.21 11.3 13.3 15.1 16.8
99.73% 9.00 11.8 14.2 16.3 18.2 20.1
99.99% 15.1 184 21.1 23.5 25.7 278

Ax? as a Function of Confidence Level
and Degrees of Freedom
(Based on Press et al. 1986, p. 536.)

e To find the no confidence interval for one parameter,

use Ax? for v =1 (or n?).

e To find the no joint confidence region for m param-

eters, use Ay? for v = m.

e To find either an interval or region using the likelihood
function £, use Alogl = Ax?/2.



Parameter Estimation

Never project a (properly estimated) region onto a pa-
rameter axis to estimate an intervall This always over-
estimates the size of the interval.
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Frequentist Parameter Estimation

To determine confidence intervals and regions, a frequen-
tist generally must simulate and fit new datasets to deter-
mine the sampling distributions for each model parame-
ter.

o [f the true parameter values are unknown (which is
usually the case), then a grid of model parameter val-
ues should be constructed, with a large number of
datasets sampled at each grid point.

e But the usual choice is to appeal to asymptotic be-
havior and sample datasets using M (6). This method
may only be useful in limited circumstances, as > 100
datasets should be sampled and fit for accurate re-
sults.



Frequentist Parameter Estimation

One can estimate confidence intervals without having to
use simulations if the y? or log £ surface in parameter
space is “well-behaved,” 7.e. if

e the surface is approximately shaped like a multi-
dimensional paraboloid; and

e the best-fit point is sufficiently far from parameter-
space boundaries.

Three common ways of determining no intervals are:

e varying a parameter’s value, while holding the values
of all other parameters at their best-fit values, until

X = o
n2.
—log L =log L, - '%;

e the same as above, but allowing the values of all
other parameters are allowed to float to new best-
fit values; and

e computing n,/C; ;, where the covariance matrix C; ; =
I}, and I, the information matrix computed at the
best-fit point, is

1 0%y? d%log L

L, = - 2X .
77 200,00, O 96,00
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Figure 2: Example of a “well-behaved” statistical surface in parameter space, viewed as a
multi-dimensional paraboloid (x?, top), and as a multi-dimensional Gaussian (exp(—yx2/2) ~
L, bottom).
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Figure 3: On the right, 1, 2, and 30 contours determined for a statistical surface that is
not “well-behaved” in parameter space. With such a surface, rigorous parameter estimation
involves simulations (frequentist approach) or numerical integration of the surface (Bayesian
approach). From Freeman et al. (1999).



Frequentist Parameter Estimation

Things to keep in mind about these confidence inter-
val estimators (dubbed UNCERTAINTY, PROJECTION, and
COVARIANCE in Sherpa, respectively):

e The first method will always underestimate the inter-
val if the value of the parameter of interest is corre-
lated with other model parameter values.

e The second method (which is relatively slow) is in a
rigorous sense no more accurate than the third method
(which is fast), but it does provide a means of visual-
izing the statistical surface.

e A statistical surface is “well-behaved” if the second
and third methods give the same interval estimates.

e The condition that the best-fit point be sufficiently far
from parameter-space boundaries means that these
methods are not appropriate for determining upper
or lower limits.



Example with a Well-Behaved
Parameter Space

sherpa> fit

powll: v1.2

powll: initial function value = 8.22297E+01

powll: converged to minimum = 6.27050E+01 at iteration =
powll: final function value = 6.27050E+01

p.cO 56.2579
p.-cl 0.11117
p.c2 -0.00119999

sherpa> uncertainty
Computed for uncertainty.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound
p-cO 56.2579 -0.865564 +0.864461
p.cl 0.11117 -0.0148228 +0.0148038
p.c2 -0.00119999 -0.000189496 +0.000189222

sherpa> projection
Computed for projection.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound
p.cO 56.2579 -2.64465 +2.64497
p.cl 0.11117 -0.120684 +0.120703
p.c2 -0.00119999 -0.00115029 +0.00114976

sherpa> covariance
Computed for covariance.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound
p-cO 56.2579 -2.64786 +2.64786
p.cl 0.11117 -0.121023 +0.121023

p.c2 -0.00119999 -0.00115675 +0.00115675
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Bayesian Parameter Estimation

A Bayesian estimates credible intervals and regions by
marginalizing (integrating) the parameter posterior dis-
tribution over the space of nuisance (uninteresting) pa-
rameters. For instance:

p(6:1D) = [, dbs -+ [, dbp p(6|D).

The central 68% of the distribution p(6;|D) is the lo
credible interval.

Marginalization may be done by brute-force integration
or, for higher dimensional problems (N z 10), by adaptive
integration. However, if the statistical surface is “well-
behaved,” one can also estimate credible intervals using
the Laplace Approximation:

p(61|D) = p(bs, - - -, 0p)(2m) 7D/ x
Jdet C(61, 85, - - -, 0p)L(61, 05, - - -, bp) .

If the value of parameter 6; is correlated with other pa-
rameter values, then when computing p(6:1|D), the values
of parameters (6s, - - -,0p) should be allowed to float to
new best-fit values.
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Glossary of Important Notation

e [: a dataset

e D;: the datum of bin ¢ of the dataset

e N: the number of bins in the dataset

e B: a background dataset associated with D

e B;: the datum of bin ¢ of the background dataset
o M = M(0): a model with free parameters 6

e 0: the vector of best-fit model parameters

e P: the number of (freely varying) model parameters
e M;: the convolved model amplitude in bin ¢

e /1: the mean of a distribution

e V/: the variance of a distribution

e 0: the standard deviation of a distribution

e /| X|: the expectation of variable X

e L: the likelihood

e L: the log-likelihood log/L

e x*: the “chi-square” statistic



Definitions

e Random variable: a variable which can take on dif-
ferent numerical values, corresponding to different ex-
perimental outcomes.

— Example: a binned datum D;, which can have dif-
ferent values even when an experiment is repeated
exactly.

e Statistic: a function of random variables.

— Example: a datum D;, or a population mean

(v = [=L, Di]/N).

e Probability sampling distribution: the normalized
distribution from which a statistic is sampled. Such a
distribution is commonly denoted p(X|Y'), “the prob-
ability of outcome X given condition(s) Y',” or some-
times just p(X). Note that in the special case of the
Gaussian (or Normal) distribution, p(X ) may be writ-
ten as N (u,0?), where p is the Gaussian mean, and

o2 is its variance.



Properties of Distributions

The beginning X-ray astronomer only needs to be familiar
with four properties of distributions: the mean, mode,
variance, and standard deviation, or “error.”

o Mean: p= E[X] = [dX Xp(X)
e Mode: max|p(X)]
e Variance: V[X] = E[(X —p)?] = [dX (X —u)*p(X)
o Error: ox = |V[X]
Note that if the distribution is Gaussian, then ¢ is indeed

the Gaussian ¢ (hence the notation).

If two random variables are to be jointly considered, then
the sampling distribution is two-dimensional, with shape
locally described by the covariance matrix:

( V[Xl] COV[Xl, XQ] )
COV[Xl,XQ] V[XQ]
where

cov[ X1, Xo] = E[(X1— pxy) (X2 — px,)]
= E[XlXQ] — E[Xl]E[X2]

The related correlation coefficient is

X1, X
COI'I'[Xl,XQ] = COV[ b 2].
0X,0X,

The correlation coefficient can range from —1 to 1.
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Figure 1: Top: example of a joint probability sampling distribution for two random variables.

Bottom: the marginal sampling distribution p(z)



The Poisson Distribution

In the remainder of this class, we will concentrate ex-
clusively upon fitting counts spectra, i.e. fitting data
sampled from the Poisson distribution.

The discrete Poisson distribution

D;
M; o~ M;
D!

p(Di|M;) =

gives the probability of finding exactly D; events in bin ¢
of dataset D in a given length of time, if the events occur
independently at a constant rate M;.

Things to remember about the Poisson distribution:
o = F|D;] =M,
o V|D;| = M;;

e cov|D;,, D;,| = 0;

)

e the sum of n Poisson-distributed variables (found by,
e.g. combining the data in n bins) is itself Poisson-
distributed with variance =} ; M;; and

e as M, — oo, the Poisson distribution converges to
a Gaussian distribution N(u = M;, 0% = M;).
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Figure 2: Integer counts spectrum sampled from a constant amplitude model with mean p
= 60 counts, and fit with a parabolic model.



Figure 3: Example of a two-dimensional integer counts spectrum. Top Left: Chandra ACIS-
S data of X-ray cluster MS 2137.3-2353, with SAODS9 source regions superimposed. Top
Right: Best-fit of a two-dimensional beta model to the filtered data. Bottom Left: Residuals

(in units of o) of the best fit. Bottom Right: The applied filter; the data within the ovals
were excluded from the fit.
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Assessing the Quality of Fit

One can use the Poisson distribution to assess the prob-
ability of sampling a datum D; given a predicted (con-
volved) model amplitude M;. Thus to assess the quality
of a fit, it is natural to mazimize the product of Pois-
son probabilities in each data bin, 7.e. to maximize the
Poisson likelthood:

D;

EzHL—HD'

exp(~ M) = Lp(Di|M)

In practice, what is often maximized is the log-likelihood,
L = log L. A well-known statistic in X-ray astronomy
which is related to L is the so-called “Cash statistic”:

N
C = 2%[M;— D;log M;] o< —2L,



(Non-)Use of the Poisson Likelihood

In model fits, the Poisson likelihood is not as commonly
used as it should be. Some reasons why include:

e a historical aversion to computing factorials;

e the fact the likelihood cannot be used to fit “back-
ground subtracted” spectra;

e the fact that negative amplitudes are not allowed (not
a bad thing—physics abhors negative fluxes!);

e the fact that there is no “goodness of fit” criterion,
i.e. there is no easy way to interpret L., (however,

cf. the CSTAT statistic of XSPEC); and

e the fact that there is an alternative in the Gaussian
limit: the y? statistic.



The y? Statistic

Here, we demonstrate the connection between the Poisson
likelihood and the y? statistic.’

e Step 1: write down the Poisson likelihood (in one bin).

L, = ]gf exp(—M;)
e Step 2: apply Stirling’s approximation.
D;! = +2xD,DPe "
e Step 3: look near, e.g., the log-likelihood peak, and
reparameterize in terms of € = M\i/;)—? L,

M;
L; = logl; =~ ——log(27rD)+Dlog(D)+D M,

7

1
=5 log(2mD;) + D;log(1 + \/E> — v/ D;
1
=5 log(2mD;) +
€ € €3
D, _ —...| = eV/D;
(VDi 2D'+3D-3/2 ) )
1 2 63
5 108(21Di) — o + O \/E)
= L, &~ — -
J2rD; P 2D, ] e ( 2

1The following is based on unpublished notes by Loredo (1993).



Validity of the y? Statistic

Summarizing the results shown on the last panel, if
e D, > 1in every bin ¢, and

e terms of order € and higher in the Taylor series ex-
pansion of L may be ignored,

then the statistic x¥? may be used to estimate the Poisson
likelihood, and an observed value x2,, will be sampled
from the x? distribution for N — P degrees of freedom.

= Regarding the first condition above, the general rule-
of-thumb is that there should be a minimum of five counts
in every bin.

= Regarding the second condition above, it is only an
major issue if the fit is bad.

e However, bad fits are common in X-ray astronomy;
one example is the fit of a continuum model to data
exhibiting an obvious (emission or absorption) line.
Inferences made using such a fit can be suspect!

Note that if either rule breaks down, you can still use the
x? statistic; however, it will no longer be y*-distributed
and you may need to use Monte Carlo simulations to
make statistical inferences. Also, your estimates of best-
fit parameter values may not closely match estimates you
would have made using the Poisson likelihood.
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Figure 6: Examples of the x? distribution for v = N — P = 1, 2, 3, 4, and 5 (Eadie et
al. 1971, p. 64).



Versions of the y? Statistic

The version of y? derived above is dubbed “data vari-
ance” x?, or x3, because of the presence of D in the
denominator. Generally, the x? statistic is written as:

N (D; — M;)*
oo L0

where o? represents the (unknown!) variance of the Pois-
son distribution from which D; is sampled.

x° Statistic o2
Data Variance D;
Model Variance M,;
Gehrels 1+ +/D; +0.75)?
Primini M; from previous best-fit
Churazov based on smoothed data D
“Parent” #
Least Squares 1

Note that some X-ray data analysis routines may estimate
o; for you during data reduction. In PHA files, such
estimates are recorded in the STAT_ERR column.



Statistical Issues: Goodness-of-Fit

e The y? goodness-of-fit is derived by computing

oo = [o d’p(*IN - P)

1 X2 ¥_1 2

. 00 2 [ X X
= o) b ™ (2) ©

This can be computed numerically using, e.g., the

GAMMQ routine of Numerical Recipes.

e A typical criterion for rejecting a model is a2 < 0.05
(the “95% criterion”). However, using this criterion
blindly is not recommended!

e A quick’n’dirty approach to building intuition about
how well your model fits the data is to use the reduced

X%, B-€. Xopsx = Xops/ (N — P):

— A “good” fit has x5, ~ 1.
—1If x2ps, — 0, the fit is “too good” —which means
(1) the errorbars are too large, (2) x?,, is not sam-

pled from the x? distribution, and/or (3) the data
have been fudged.

The reduced y? should never be used in any math-
ematical computation—if you are using it, you are
probably doing something wrong!
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Figure 7: Comparison of the distributions of 500 sampled values of x? versus the expected
distribution for 99 degrees of freedom. Top: x* with Gehrels variance. Bottom: x* with
data variance.



Statistical Issues: Background Subtraction

e A typical “dataset” may contain multiple spectra, one
of which contains contributions from the source of in-
terest and the background, and one or more others
which contain background counts alone. (The back-
ground itself may contain contributions from the cos-
mic X-ray background, the particle background, etc.,
but we’ll ignore this complication.)

e The proper way to treat background data is to model
them!

sherpa> data source.pi

sherpa> back back.pi

sherpa> source = xswabs [sabs]*pow[sp]

sherpa> bg = xswabs[babs]*pow [bp]

sherpa> statistic cash

sherpa> fit # maximize L(B)*L(S+B) or minimize X~2(B)+X"2(S+B)

powll: final function value = -7.01632E+03
sabs.nH 2.35843 10722/cm"2
sp.gamma 1.48526
sp.ampl 0.00195891
babs.nH 0.671569 10722/cm"2
bp.gamma 1.07225
bp.ampl 0.000107204
sherpa> projection

Parameter Name Best-Fit Lower Bound Upper Bound
sabs.nH 2.35732 -0.0981442 +0.150539
Sp.gamma 1.48477 -0.0645673 +0.101794

sp.ampl 0.00195682 -0.000177659 +0.000317947
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Figure 8: Top: Best-fit of a power-law times galactic absorption model to the source spectrum
of supernova remnant G21.5-0.9. Bottom: Best-fit of a separate power-law times galactic
absorption model to the background spectrum extracted for the same source.



Statistical Issues: Background Subtraction

e However, many X-ray astronomers subtract background
data from the raw data:
?:1 Bi,j
>7-1PB;tB;
n is the number of background datasets, ¢ is the ob-

servation time, and (3 is the “backscale” (given by the
BACKSCAL header keyword value in a PHA file).

D; = D; - fptp

e Why should one not subtract background?

— It reduces the amount of statistical information in
the analysis—the final fit parameter values will be
a less accurate estimate of the true values.

— The data D; are not Poisson-distributed —one can-
not fit them with the Poisson likelihood (or the
Cash statistic), even in the low-count limit.

— Fluctuations (particularly in the vicinity of local-
ized features) can adversely affect analysis.

e To use x?, the errors must be propagated:

~ PO ix o x,
VIf( X1,y X)) = EU; 8,uz-8,ujCOV(X“X])

5 (8f)2 VX

1=1 8,uz-
; n [ Bptp
=V[D)] = VIDi+ X
i=1\BB;tB;

Q

)2 VI[B;;| -



Statistical Issues: Background Subtraction

e Here, we repeat the fit from above, except that this
time the data are background-subtracted:

sherpa> data source.pi

sherpa> back back.pi

sherpa> subtract

sherpa> statistic chi gehrels # can’t use Cash!
sherpa> fit

powll: final function value = 1.88299E+02
sabs.nH 2.67251 10722/cm"2
sp.gamma 1.74921
sp.ampl 0.00261343

sherpa> projection

Computed for projection.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound
sabs.nH 2.67251 -0.202747 +0.214219
Sp.gamma 1.74921 -0.14036 +0.144823
sp.ampl 0.00261343 -0.000475006 +0.000597735

Parameter Name Best-Fit Lower Bound Upper Bound
sabs.nH 2.35732 -0.0981442 +0.150539
Sp.gamma 1.48477 -0.0645673 +0.101794

sp.ampl 0.00195682 -0.000177659 +0.000317947




Statistical Issues: Rebinning

e Rebinning data invariably leads to a loss of statis-
tical information!

e Rebinning is not necessary if one uses the Poisson
likelihood to make statistical inferences.

e However, the rebinning of data may be necessary to
use x? statistics, if the number of counts in any bin is
s 5. In X-ray astronomy, rebinning (or grouping) of
data may be accomplished with:

— grppha, an FTOOLS routine; or
— dmgroup, a CIAO Data Model Library routine.

One common criterion is to sum the data in adjacent
bins until the sum equals five (or more).

e Caveat: always estimate the errors in rebinned spec-
tra using the new data D) in each new bin (since these
data are still Poisson-distributed), rather than prop-
agating the errors in each old bin.

= For example, if three bins with numbers of counts
1, 3, and 1 are grouped to make one bin with 5
counts, one should estimate V|D' = 5| and not
VID'| = V[Dy =1+ V|[Dy = 3| + VD3 = 1].
The propagated errors may overestimate the true
errors.



Statistical Issues: Bias

e If one samples a large number of datasets from a given
model M(0) and then fits this same model to these
datasets (while letting 6 vary), one will build up sam-
pling distributions for each parameter 6;.

e An estimator (e.g. x*) is biased if the mean of these
distributions (£|0;|) differs from the true values 6.

e The Poisson likelihood is an unbiased estimator.

e The \? statistic can be biased, depending upon the
choice of o:

— Using the Sherpa utility FAKEIT, we simulated 500
datasets from a constant model with amplitude 100
counts.

— We then fit each dataset with a constant model,
recording the inferred amplitude.

Statistic Mean Amplitude

Gehrels 99.05
Data Variance 99.02
Model Variance 100.47
“Parent” 99.94
Primini 99.94

Cash 99.98
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Figure 9: A demonstration of bias. Five hundred datasets are sampled from a constant
model with amplitude 100 and then are fit with the same constant amplitude model, using
x? with data variance. The mean of the distribution of fit amplitude values is not 100, as it
would be if the statistic were an unbiased estimator.



Statistical Issues: Systematic Errors

e In X-ray astronomy, one usually speaks of two types
of errors: statistical errors, and systematic errors.

e Systematic errors reflect uncertainties in instrumental
calibration. For instance:

— Assume a flat spectrum observed for time ¢ with
a telescope with perfect resolution and an effective
area A;. Furthermore, assume that the uncertainty
in A; is 04,

— Neglecting data sampling, in bin ¢, the expected
number of counts is D; = D, ;(AE)tA;.

— We estimate the uncertainty in D, as

OD; — D%Z‘(AE)tO'A,Z' = D%Z(AE)t‘szz = szz

e The systematic error f;D;; in PHA files, the quantity
f; 1s recorded in the SYS_ERR column.

e Systematic errors are added in quadrature with sta-

tistical errors; for instance, if one uses X?l to assess the
quality of fit, then o; = \/Dz- + (fiD;)?.

e To use information about systematic errors in a Pois-
son likelihood fit, one must incorporate this informa-
tion into the model, as opposed to simply adjusting
the estimated error for each datum.



Methodologies

It is important to note that the field of statistics may be
roughly divided into two schools: the so-called “frequen-
tist” (or classical) school, and the Bayesian school.

N

e A frequentist assesses a model M () by first assuming
that

— M 1is the “true” model, and

— 0 are the “true” model parameter values,

and then comparing the probability of observing the
dataset D with the probabilities of observing other
datasets predicted by M.

N

e A Bayesian assesses M (6) by comparing its proba-
bility (given the observed dataset D only) with the

probabilities of other parameterized models, given
D.

We have been able to ignore the differences between the
two methodologies when discussing model fitting, up to
NOW.



Statistical Issues: Bayesian Fitting

The centerpiece of the Bayesian statistical methodology
is Bayes’ theorem. As applied in a model fit, it may be
written as

p(6|D) = p(6)

where

e p(D|0) is the likelihood £ (which may be estimated
as exp(—x*/2));
e p(0) is the prior distribution for 6, reflecting your

knowledge of the parameter values before the experi-
ment;

e p(0|D) is the posterior distribution for 6, reflecting
your knowledge of the parameter values after the ex-
periment; and

e p(D) is an ignorable normalization constant.

For now, keep in mind that a Bayesian is more interested
in finding the mode of the posterior distribution than
in determining the maximum likelihood! (Delving into
the hurly-burly world of prior specification is beyond the
scope of this class...which is now over!)




