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1. Motivation

The process of locating sources in Chandra observations can be automated using wavdetect

(Freeman et al. 2002). This method was used to compile a list of X-ray sources observed by Chandra

for Release 1 of the Chandra Source Catalog (Evans et al. 2010). Automatic source detection in

CCD data is complicated by spatial variations in the effective area, especially along chip edges, and

by the presence of readout streaks associated with bright point sources. The presence of spatially

varying diffuse emission adds to the difficulty. A common problem is that wavdetect tends to

report large numbers of spurious sources associated with chip edges, readout streaks, and diffuse

extended sources. Because a source must, by definition, rise above the local background, a suitable

definition of the background at every point in the field of view can can greatly reduce the number of

spurious sources reported by wavdetect. Here, I describe a method for constructing a background

image for input to wavdetect that reduces the number of spurious sources associated with chip

edges, readout streaks and diffuse extended sources.

2. Method

Note that the Voronoi tessellation approach used here is based on the ideas used in vtpdetect

(Ebeling & Wiedenmann 1993).

2.1. Voronoi Tessellation of a Poisson Point Process

One can idealize the distribution of background counts as a homogeneous Poisson point process

that deposits N events at random points with uniform spatial distribution over the detector area,

Ω, within time, t. Given such a set of points, the Voronoi tessellation determines a unique set of

non-overlapping polygons, each containing a single event, such that the set of polygons covers the

entire detector region Ω. It is useful to define a dimensionless reduced polygon area as α = a/ā,

where ā is a suitably chosen value that will be described below.

The statistical distribution of Poisson Voronoi cells has a form that is well characterized by

simple analytic functions (Tanemura 2003). In particular, the distribution of Voronoi polygon
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reduced areas, α, converges to a generalized gamma distribution of the form

f(α) =
abc/a

c(c/a)
αc−1 exp (−bαa) , (1)

where the parameters {a, b, c} have been empirically found to be {1.07950, 3.03226, 3.31122} (Tane-

mura 2003).

When sources are present, the spatial distribution of events is nonuniform (see Figure 1). In

particular, the events near a source are more closely spaced than the background events, making

the source polygons smaller on average than the background polygons. To detect the sources in

an image, one can construct the Voronoi tessellation and then associate with sources all polygons

having reduced area α < αthresh, where αthresh is a suitably defined reduced area threshold (Ebeling

& Wiedenmann 1993).
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Fig. 1.— Voronoi tessellation of a region containing both source and background events.



– 3 –

2.2. Polygon Area Threshold

Using the skyX,Y coordinates of events in a given observation it is straightforward to construct

the Voronoi tessellation. The implementation described here constructs the Voronoi tessellation

using the Triangle code developed by Shewchuk (1996).

It is convenient to process the events on each CCD separately. To account for spatial variations

in the effective area, the geometric area of each Voronoi polygon, ageom,k, can be corrected using

the normalized effective area, Ak ∈ [0, 1], determined from the exposure map (Davis 2001; Ebeling

& Wiedenmann 1993). A histogram of corrected polygon areas, ak = ageom,kAk, shows the actual

distribution of polygon areas in a given observation. For the largest polygon areas, the shape of

this empirical distribution is expected to correspond closely to the shape defined by equation (1),

given an appropriate value for the mean polygon area, ā.

An appropriate mean polygon area, ā, can be determined iteratively by fitting the large area

tail of the observed histogram of polygon areas with a function of the form

Fi(a;N , ā) = N
∫ ai+1

ai

f(a/ā)da (2)

where the ith histogram bin spans the interval [ai, ai+1) and where the overall normalization, N ,

depends on total number of events in the observation. The integral, Fi, is related to the normalized

incomplete Gamma function and may be evaluated conveniently using the GSL library function

gsl_sf_gamma_inc_P (Galassi et al. 2005).

As an initial guess, one can use ā1 =
∑
ak/N , restricting the fit to histogram bins in the range

[ā1,max(ak)]. Fitting equation (2) to the observed histogram with ā as an adjustable parameter

yields a new value for the mean area, ā2. Restricting the fit to the range [ā2,max(ak)] and fitting

again yields an improved value, ā3. After a few iterations, this process should converge to a good

estimate of the mean polygon area, ā, consistent with the background on the chip.

Voronoi source polygons can now be identified as those polygons with area smaller than

athresh = αthreshā (3)

where αthresh is a user adjustable parameter; typically, αthresh ≈ 0.25.

Adjacent Voronoi source polygons can be merged efficiently using the polygon merge algorithm

described by Zalik (2003). Note that the resulting merged polygons are no longer convex and may

contain holes (see Figure 2).

After constructing a set of merged source polygons, one should examine the fractional area

of the CCD covered by these polygons. If most of the area of the CCD is covered by source

polygons, then either the value of ā is too large, or the observation contains too little background

to be processed effectively by this algorithm. Reducing the value of ā and re-defining the source

polygons may greatly reduce the total area covered by source polygons. If not, then processing

should stop at this point.

Once a value of ā is selected and a set of merged Voronoi source polygons is constructed, the
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Fig. 2.— Voronoi tessellation of a region containing both source and background events. Voronoi

polygons with areas a < αthresh (blue) are identified with sources. Merging Voronoi source polygons

yields non-convex source polygons (red).

above-background regions of the image are taken to be those merged polygons that contain at least

Ns counts. Typically, Ns & 3.

2.3. Readout Streaks

Given a set of merged source polygons, Pj , one can detect readout streaks in the following way.

1. Rotate the set of merged source polygons into an x′, y′ coordinate system in which the readout

direction lies along the y′ direction.

2. Generate a large number of uniformly distributed x′, y′ points.

3. For each randomly generated point that falls inside a source polygon, record which polygon

it fell in and increment a counter for the corresponding x′ column.
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The number of counts in each x′ column is proportional to the fraction of that column’s area

that falls within source polygons. Those columns that are mostly (e.g ∼80%) covered by source

polygons are labeled as readout streaks and the associated source polygons are labeled as streak

polygons.

After identifying streak polygons, one should consider the fraction of CCD columns flagged

as readout streaks. If too many columns have been flagged, it may be that the value of ā is too

large. Reducing the value of ā and re-defining the source polygons may greatly reduce the total

area covered by source polygons. If not, then processing should stop at this point.

2.4. Filtering Source Events

Given a set of merged source polygons, Pj , the events in the dataset can be partitioned into two

subsets, a set of source events, S ∈ {Pj} and a set of background events, B /∈ {Pj}. To construct

a background image we must filter the set S.

To filter the events contained in the set of source polygons, S, we may further partition the S

polygons into three categories: small polygons (a ≤ alarge), large polygons (a > alarge), and streak

polygons. The area threshold alarge is chosen to distinguish point sources from extended sources

such as galaxies.

Events falling in small polygons are replaced with a smaller number of uniformly distributed

points. The number of replacement points is chosen to match the spatial density of background

counts, nk = fsmallak/ā, where fsmall is a control parameter.

Events falling in large polygons may also be replaced with a number of uniformly distributed

points. Because such extended sources may contain bright point sources (e.g. a galaxy with a

bright AGN), the spatial density of replacement points may be chosen high enough to mask the

diffuse emission, allowing wavdetect to pick out the bright embedded point sources. The intent

is to reduce the number of spurious point sources associated with diffuse emission from extended

sources.

When generating coordinates for spatially uniformly distributed points, we use low discrepancy

Halton sequences to reduce the chance of creating a local grouping of randomly generated points

that could be mistaken for a faint source.

To reduce the number of spurious sources associated with readout streaks, we want to include

all of the streak events in the background image. But because the streak polygons may also contain

embedded bright point sources, some filtering of streak polygon events is useful. To filter events

in streak polygons, we construct an image of the events, select those pixels exceeding a specified

threshold, and filter out enough events in those pixels to bring them below the specified threshold.
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2.5. Background Image Construction

After filtering events contained in source polygons of all types, a background image is con-

structed from the remaining events using the Delaunay Triangulation Field Estimator (DTFE)

described by Schaap (2007). We use Triangle (Shewchuk 1996) to construct the Delaunay trian-

gulation.

Given the Delaunay triangulation of a point set, the DTFE provides an estimate of the count

density at any spatial point. This estimate is based on a 2D linear interpolation between count

density values defined at each vertex in the triangulation. To construct the estimate, we must first

construct an appropriate definition of the count density, σi, at each vertex in the triangulation.

The Delaunay triangulation defines a set of M triangles such that the ith triangle has area

Â(i). Using a linear approximation to the count density within each triangle, the total number of

counts in each triangle corresponds to the volume of the polyhedron shown in Figure 3. Note that

the resulting number of counts need not be an integer.

(x0, y0)(x1, y1)

(x2, y2)

σ0

σ1

σ2

Fig. 3.— Polyhedron volume element.

The volume of the polyhedron shown in Figure 3 is

V̂ =
1

3
(σ0 + σ1 + σ2) Â, (4)

where Â is the area of the triangle with vertices (xj , yj), j = 1, 2, 3. Expressing the total number of

counts as a sum of such polyhedron volumes, we can write

N =

M∑
i=1

V̂ (i) =
M∑
i=1

1

3
[σ0(i) + σ1(i) + σ2(i)] Â(i). (5)
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Because each vertex, k, in the triangulation is shared by a number of triangles, Mk, each σk will

appear Mk times in the sum in equation (5). Rearranging the terms in that sum, we can collect

the coefficients of each σk together, writing the rearranged expression in the form

N =
1

3

N∑
k=1

σk

Mk∑
j=1

Âk(j), (6)

where we now have a sum over N vertices. The notation Âk(j) means that triangle j containing

vertex k has area Âk(j). Equation (6) is trivially satisfied if we define

σk ≡
3∑Mk

j=1 Âj(k)
, (7)

as the count density associated with each vertex.

Having defined the count density at each point in the triangulation, it is straightforward to

construct the DTFE image by simply integrating over the continuous (linearly interpolated) count

density function to determine the number of counts in every image pixel. This integration can be

directly expressed as a sum of polyhedron volumes in which every polyhedron has the form shown

in Figure 3.

The DTFE image has the advantage that it preserves exactly the total counts in the data

and linearly interpolates the spatial structure into every pixel while preserving small scale features

associated with bad columns, chip edges, and readout streaks (see Figure 4).

(a) (b)

Fig. 4.— (a) Chandra level 2 event file for obsid 6204, smoothed with a Gaussian kernel with

radius 3 pixels. (b) DTFE background image for the same region constructed using the algorithm

described. Note that the background image contains the readout streak and that the polygon

containing the galaxy has been filled in with a relatively high uniform surface brightness. Both

images are grey scale, showing pixel values in the range 0.001 (white) to 5 counts (black) on a

logarithmic scale.
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2.6. Issues

Using the DTFE background image in wavdetect reduces the number of spurious sources

associated with chip edges and bright readout streaks (see Figure 5).

However, in each observation, a few sky X,Y pixels not obviously associated with any source

may contain multiple events, yet still fall below the source count threshold, Ns. Such pixels may

be associated with unfiltered afterglow events or may occur when post-processing with a sub-pixel

algorithm leaves multiple background events with identical X,Y coordinates. For obvious reasons,

the tessellation algorithm described here requires every event to have unique X,Y coordinates.

To ensure that that is the case, we apply a tiny random offset, e.g. 0.1 pixel to all input events.

Nevertheless, in each observation it may happen that up to Ns “background” events may occur

in a few single, isolated ACIS pixels in sky X,Y coordinates, Whenever this happens, the corre-

sponding pixels in the DTFE background image will be very bright compared to the typical nearby

background level.

While such bright pixels may appear incorrect, they do accurately reflect the estimated back-

ground count distribution. It is unclear how to avoid these bright pixels without breaking the

mechanism used to avoid spurious sources along readout streaks, or otherwise limiting the effec-

tiveness of the overall method.
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Fig. 5.— The red ellipses show the X-ray sources found by wavdetect using the DTFE background

image shown for Chandra obsid 6204 in Figure 4. Note that there are no spurious sources associated

with the readout streak; the few sources detected near the streak are undoubtedly real sources.


