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ABSTRACT

The posterior probability distribution of the source intensity is calculated for
the case when imperfect apertures are used to measure counts.

Subject headings: methods: data analysis — methods: statistical

1. Introduction
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2. X-ray Aperture photometry

Suppose C counts are observed in an “source” aperture of area Ag and B counts are
observed in a “background” aperture of area Ag. Further suppose that the source aperture
encloses a fraction f of a PSF centered in Ag and spills over by a fraction g over the back-
ground aperture. Note that these areas need not be circular, concentric, or even contiguous.

The observed counts are presumed to be generated via a Poisson process, i.e.,
C ~ Pois(§) = Pois(fs+b)
B ~ Pois(¢) = Pois(gs+rb), (1)
where 6, ¢ are the Poisson intensities that lead to the observations in the source and back-

ground apertures respectively, s is the intensity of the source, and b is the intensity of the

background normalized to the area of the source aperture, and r = ﬁ—‘;‘ is the ratio of the

background and source apertures.

We seek to determine the posterior probability of s, marginalized over the background,

p(s|CB) = / dbp(sb|CB) 2)

where the integrand on the rhs is the joint posterior probability distribution of s and b.

2.1. The Classical Case

In the high counts regime, we can approximate s and b by their MLE values, and thus

write

C = fs+b
B = gs+rb (3)

which leads to the solution

rC — B

rf—g

p = IB9C (4)
rf—g

with errors propagated under an assumption of Gaussian regime,

r’C + B

(rf—g)

2B + g°C

(rf—g9)?
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2.2. The Bayesian Calculation

First note that the variable pairs (6, ¢) and (s, b) are linear transforms of each other.
Thus,

p((06|CB)dfd¢ = p(sb|CB)J(0,¢;s,b)dsdb
2(6,9)
d(s,b)
= p(sb|CB)(rf — g)dsdb. (6)

= p(sb|CB) ‘ dsdb

Now, the joint posterior probability density p(6¢|CB) can be written out using Bayes’
Theorem as
p(0)p(¢)p(C|6¢)p(B|6¢)
p(CB)
p(8)p(¢)p(C0)p(B|¢)

= p(CB) ’ "

where the likelihoods are simplified because C' and B are independent measurements; p(6)

p(09|CB) =

and p(¢) are priors on the Poisson intensity in the source and background aperture, and we
use ~vy-functions for them,
ﬂsasgasfl 67,350
(as)
BBQB(éaB*l e PBo

p(¢) = Tap) : (9)

where ag, ap, s, Op are parameters that define the shape of the functions. For non-informative

priors, a typical choice is ag = ag = 1 and s = g = 0, representing the information en-

1 For the sake of simplicity, we

coded in an observation of 0 counts obtained over 0 area.
require that ag, ap be integers. This is not restrictive, because priors can always be set in

terms of expected counts (ag, ap =expected counts+1).

The likelihoods are

] (10)
_ P
p(Blg) = TB+1) (11)

(12)

INote that this leads to an improper prior, i.e., one that is not normalizable. However, use of such priors
does not imply that the posterior densities are also improper.
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The joint posterior (Equation 7) can then be written as

p(9¢|CB) — 90+0571¢B+0¢371 670(1+ﬂ5)*¢(1+ﬁB) %
1 Bs®S Bp”" (13)
p(CB)T(as)T(ap)T(C +1)I'(B+1)’
where the normalization factor p(C B) is determined by requiring that
/ d9/ do p(0p|CB) =1. (14)
Considering that
> L'(4)
A-1 _—zB __
/0 de 2" e % = A (15)
we have
© - - F(C + Ozs)
do gC+eas—1 —6(+ps) _— _“\X T 75/ d 16
/0 ‘ (14 ps)Ctas " (16)
& - - F(B + OéB)
do ¢Btes—1 o=0(1+88) _ . 17
| o IEnr (1)
Therefore, by Equations 13 and 14,
rcc I'(B s fgE
p(CB) = (C+as)l'(B+ap)Bs™ Be (18)

[(as)T(ap)l(C + 1)I'(B +1)(1+ Bs)¢tes(1 + Bg)Btas

(Note that for g = ag = 1 and s = P = 0, the determinate portion of the above
expression reduces to p(CB) = 1.) With this normalization, Equation 13 reduces to

(1 ﬂS)C+aS(1 6B)B+QB o B B - -
06|CB) — gC+as—14B+ap-1 ,~0(1+Bs)-¢(1+85) 1
P(69|CB) ['(C + as)l'(B + ag) ¢ © (19)

We change variables from 6, ¢ — s,b (see Equation 6) and write

p(6¢) A8 dp = (rf — g) p(8(s,b)¢(s,b)|CB) ds db
(1 +BS)C+QS(1 +BB)B+0¢B

['(C + as)l'(B + ag)
(fs+b)C’+asfl(gS+rb)B+anl e (fs+b)(1+Bs)—(gs+rb)(1+85)
(1 +BS)C+QS(1 +BB)B+0¢B

['(C + as)l'(B + ag)
(f3+b)c+as 1(g8—|—7‘b)B+QB 1 *S(f+9+fﬁs+gﬂ3) —b(1+r+Bs+rBB) (20)

= dsdb(rf—g)

= dsdb(rf—g)
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Thus, the posterior probability of the source intensity,
p(s|CB)ds = ds / db p(sb|CB)
0

(1+ Bs)CFas(1+ p)Bres % oS\ +a+FBs+9Bn)
[(C + as)T'(B + ag)

/ db (fs +b)Ctes—1(gs + rb)Bras—1 o b(+r+8s+r8p) (21)
0

= ds (rf —g)

Now, we can write

n n

, I'(n+1) -
n __ nC k, n k: k, n—k
(z +v) kz_g kY ;F(k+1)F(n—k+1)xy

and thus expanding the factors within the integrand with C+ags—1 = N and B+ag—1 =M
(this is where it is necessary to assume that ag and ap are integers),

(Fs+ D)7 = (fs+b)"

N
T(N+1) .
— k kbN k 29
kzgf Tk +OI(N —k+1)° ’ (22)
(gs +rb)Bres—t — (gs+rb)M
M
— Zgj M= L +1) sTpM I (23)
g T(j+ DM —j+1)

Thus, the integrand in Equation 21 can be written as
/ db (fS + b)C'+OtS*1(gs + Tb)B+aB*1 ¢ b(1+r+Bs+rBp)
0

X T(N +1)I(M +1)
= DD g s T(k+ DI(N _k+ DG+ )I(M —j+1)

k=0 j=0

Y

[ee]
/ db bN+Mfkfj efb(1+7’+ﬂs+7”53)
0

N M
E:E ’fk g’ rM=3 gkti

k=0 j=0

DIN+ )M +1)I(N+M—k—j+1)
F'k+1)IN —k+ 1D+ 1)I(M — 5+ 1)(1+r+ Bs + rfBp)NtM-k-i+l

. (24)

Putting it all together,

p(s|CB)ds = ds / db p(sb|CB)
0
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(1 +65)C+as(1 +ﬂB)B+aB

= ds(rf—9) ['(C + as)I'(B+ ag)
N M
Zz(fk gj pM=i gkti o—s(f+9+fBs+9BB) o
k=0 j=0

TN+ 1)P(M+ )TN+ M —k—j+1) -
Ck+1)I(N—-k+1)C(G+1D0(M — 5+ 1) (147 + Bs + rBp)NtM—k—j+17"

25)

For the non-informative priors, ag,ap =1 and Bs = g = 0,

1
r(C+1I0(B+1)

C B

k=0 ]:0

p(s|CB)ds = ds (rf —g)

rC+1)r(B+1)r(C+B—k—j+1)
Fk+1DI(C —k+1DI(G+1DI(B — j+1)(1 +7)C+B-k-j+l

). (26)

And further, when the source PSF has no overlap with the background aperture, ¢ = 0, and
only the j = 0 term remains from the summation,

1

p(s|CB)ds = ds NEEEI (B+1)X

C

E:fk+1 pBHL Gk oosf

- NC+1)I'(B+1)I(C+B-k+1)
Fk+1)I(C—k+1)I(B+1)(1+r)c+B-k+l

). (27)



-7 -

REFERENCES
Loredo, T.J. 1990, in “Maximum Entropy and Bayesian Methods”, ed. P.F. Fougere (Dor-
drecht:Kluwer), 81
van Dyk, D.A., Connors, A., Kashyap, V.L., & Siemiginowska, A. 2001, ApJ, 548, 224
http://hea-www.harvard.edu/~kashyap/scar.html#PPD_SRC

This preprint was prepared with the AAS IATEX macros v5.2.



