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The goal of this document is to come up with a simpler, more easily described and programmed version
of the “Bayesian Estimation of Hardness Ratios” (BEHR) code. Since our primary concern is the Level 3
catalog, we will treat the problem somewhat less generally than in the paper by Park et al. (2007, ApJ, 652).
Specifically, we will not look at all definitions of the color (hardness ratio), nor will we consider mutliple types
of prior probability distributions. For our purposes the requirements are that: a) the algorithm is valid for color
definitions of the form(A − B)/(A + B), b) is valid for 0 observed counts in one of the bands, c) allows
effective area variations, etc., and backgrounds to be incorporated, and d) the algorithm is comprehensible to
a typical astrophysicist, but reasonably accurately reproduces the results of Park et al. (2007).

1 No Background

The algorithm described in this section meets all of the above goals, with the exception of easily incorporating
a significant background. In the next section, I describe theversion with background incorporated.

Bayes Theorem states thatP (θ|D,M) ∝ P (D|θ,M)P (M,θ), i.e., the probability of the model parame-
ters (θ) given the data (D) and the model (M ), is proportional to the probability of the data given the model
and the parameters times a prior (P (M,θ)). If we consider a Poisson process, and we take a uniform prior
probability for the value of the expected counts (over a given time interval), then Bayes theorem yields for the
intrinsic (i.e., expected) counts in a channel,Aint:

P (Aint|Aobs) dAint =
(εAAint)

Aobs exp(−εAAint)

Aobs!
d(εAAint) . (1)

AlthoughAint is the expected, real-valued counts,Aobs is the observed integer-valued counts in the channel.
εA is a scaling factor that incorporates any desire to normalize the intrinsic rate to another reference (via differ-
ent effective areas, different integration times, etc.). One possible use forεA is to reference backside/frontside
effective areas in bands to one another (eventhough realistically this factor should also include spectral shape).
Note also that the above probability is properly normalized, and is also valid for 0 observed counts.

We’d now like to use this probability distribution to help usarrive at a probability distribution for the
hardness ratio defined by:

H ≡
Aint − Bint

Aint + Bint
, (2)

given counts observed in two channels,Aobs and Bobs. We can calculate this probability distribution by
effecting a simple coordinate transformation. If we look atthe Aint-Bint plane, then lines of constantH
are radial spokes (H = 1 along theAint-axis, H = 0 at 45◦, andH = −1 along theBint-axis), and

curves of constant
√

A2
int + B2

int, R, are quarter-circles. Thus we haveAint = R cos θ, Bint = R sin θ,
anddAintdBint = RdRdθ. The hardness ratio is then simply defined by:

H =
cos θ − sin θ

cos θ + sin θ
, dH =

−2

(cos θ + sin θ)2
dθ . (3)

As the observed counts in each channel are independent Poisson variables, we treat the probability distri-
butions for the intrinsic counts independently. Thus, we can write the joint probability density forAint and
Bint as:

P (Aint, Bint|Aobs, Bobs) dAintdBint = F (Aint)F (Bint) RdRdθ . (4)

Using eq. (1) above, we can write this as:

P (Aint, Bint)dAintdBint =
εAobs+1
A εBobs+1

B (cos θ)Aobs (sin θ)Bobs

Aobs!Bobs!
RAobs+Bobs+1 e−R(εA cos θ+εB sin θ)dRdθ

(5)
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Marginalizing overR, and using eq. (3) to replacedθ, we obtain:

P (H)dH = 2

[

(Aobs + Bobs + 1)!

Aobs!Bobs!

]

(

εAobs+1
A εBobs+1

B

)

[

(cos θ)Aobs (sin θ)Bobs (cos θ + sin θ)2

(εA cos θ + εB sin θ)Aobs+Bobs+2

]

dH (6)

John Davis pointed out to me that this equation simplifies even further by explicitly substitutingH back
into the equation, to find:

P (H) dH = 2

[

(Aobs + Bobs + 1)!

Aobs!Bobs!

]

(

εAobs+1
A εBobs+1

B

) (1 + H)Aobs(1 −H)Bobs

[εA + εB + (εA − εB)H]Aobs+Bobs+2
dH . (7)

This is very straightforward to program, and is even analytically integrable (although numerical integration
might be more convenient). For the special case ofεA = εB = 1, it’s easy to show that this peaks at
H = (Aobs − Bobs)/(Aobs + Bobs).

The only shortcomings in the above is that it does not yet include a background term. As is, it could be
used for the (many) cases where the background is negligible(predominantly on-axis sources). It needs to be
generalized for cases where the background becomes significant (off-axis cases, most likely).

2 Background

When considering the background, we want to begin by altering eq. (1) by setting:

εAAint → εAAint + βA , (8)

whereβA is the intrinsic background rate for channelA, andAint remains the intrinsic, background-free
source counts for channelA. Performing a transformation of variables as above, we thenhave:

P (A,B) dAdB ∝
εAεB

Aobs!Bobs!
(εAR cos θ + βA)Aobs (εBR sin θ + βB)Bobs

e−[R(εA cos θ+εB sin θ)+(βA+βB)] P (βA)P (βB) RdRdθ , (9)

or, upon expanding using binomial coefficients,

P (A,B) dAdB ∝





Aobs
∑

j=0

Aobs!

j!(Aobs − j)!
(εAR cos θ)Aobs−jβj

A exp(−βA)P (βA)









Bobs
∑

k=0

Bobs!

k!(Bobs − k)!
(εBR sin θ)Bobs−kβk

B exp(−βB)P (βB)



 (10)

εAεB

Aobs!Bobs!
e−R(εA cos θ+εB sin θ) RdRdθ .

Note that the above is not actually properly normalized. Also note that we have introduced probability func-
tions, P (βA) and P (βB), for the background rates. Since these, too, will come from measurements of a
Poisson variable, e.g., counts in some large, neighboring region, we choose:

P (βA) = γA
(γAβA)δA exp(−γAβA)

δA!
, (11)

whereδA are the actual, measured (integer) counts in the backgroundregion andγ−1
A is the scaling factor that

takes us from the measured background counts to the expectedbackground counts in the source region. In
practice, we expectγA > 1, and usually hope thatγA � 1. (For the latter case, we recover the formulae for
the case of no background.)
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We can now integrate over the various nuisance parameters,βA, βB , and as before,R. And also as before,
we can substituteH back into the probability equation. We then obtain:

P (H) dH ∝ 2
(

εAobs+1
A εBobs+1

B

)

(

Aobs
∑

j=0

Bobs
∑

k=0

(δA + j)!

δA!

(δB + k)!

δB !
(γA + 1)−j(γB + 1)−k

(Aobs + Bobs + 1 − j − k)!

(Aobs − j)!(Bobs − k)!j!k!

(1 + H)Aobs−j(1 −H)Bobs−k

[εA + εB + (εA − εB)H]Aobs+Bobs+2−j−k

)

dH (12)

The above is not normalized; however, in the limit ofγA, γB → ∞, it does reduce to the properly normalized
form of P (H) found for the case of zero background.

There are a few possible strategies for calculating this probability function. For small numbers of counts
in both channelsA andB, one could try calculating each term in the above and summingover the(Aobs +
1) × (Bobs + 1) elements. The second strategy is to only retain small powersof (γA + 1)−j(γB + 1)−k. (I
have not yet tested the latter scheme to see how well it works.)

3 Multiple Observations

After the probability function has been calculated, whether with or without background, for an individual
observation, indexed byi, one can then calculate the joint probability function for aseries of observations as:

P (Hjoint) ∝
∏

i

P (Hi|A
i
obs, B

i
obs, ε

i
A, εi

B , γi
A, γi

B , δi
A, δi

B) . (13)

This form is manifestly symmetric with respect to the order of the individual observations, and it is not any
more difficult to calculate than the individual probabilityfunctions.

4 Code & Figures

Attached below is really simple (but fairly dumbass)S-lang code that seems to work well for the above cases
by producing normalized probability distributions for103 values ofH. (This should be sufficient resolution on
H to obtain 95% confidence intervals.) The case with no background is almost instantaneous. For the case of
background included, with a 100×100 array, the code runs in about 5 seconds on my 3 year old laptop. I have
faith that Davis can come up with a better version that will run 10 times faster. As proof of concept, I think this
demonstrates that we can come up with a replacement for the BEHR code that will be far easier to maintain,
and yields comparably good results. I have attached severalfigures of sample probability distributions.

require("gsl");

public variable h_lo, h_hi;
(h_lo,h_hi) = linear_grid(-1,1,1000);
public variable h = (h_lo+h_hi)/2.;
public variable dh = (h_hi-h_lo);

% No background case

public define ph_nb(a,b,ea,eb)
{

variable ph = lngamma(a+b+2) + log(2.) - lngamma(a+1) - lngamma(b+1)
+ (a+1)*log(ea) + (b+1)*log(eb) + a*log(1+h)
+ b*log(1-h) - (a+b+2)*log(ea+eb+(ea-eb)*h);
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Figure 1:Left: Probability distributions without background, forA = 1, B = 2 (blue),A = 5, B = 10 (red),
andA = 24, B = 50 (black). Compare this to Fig. 8 of Park et al. (2007).Middle: Probability distributions
with background. The values ofA andB are the same as on the left, however, for eachγA = γB = 10, and
δA = 5, δB = 10 (blue),δA = 25, δB = 50 (red), andδA = 125, δB = 250 (black). I.e., for each channel,
background makes up about half of the observed counts. The peak of the color is therefore the same as on the
left, but the distributions are wider.Right: Probability distributionswith background. The values ofA, B, δA,
andδB are the same as for the middle, butγA = 5, andγB = 10 for each. I.e., background makes up nearly
100% of the observed counts for channelA, and about half of the observed counts for channelB. Hence the
distributions are very broad and skewed towardsH = −1.
(For all figures,εA = εB = 1.)

return exp(__tmp(ph));
}

% Case with background

public define ph_bkg(a,b,ea,eb,da,db,ga,gb)
{

variable j,k,pjk;
variable psum = 0;
_for j (0,int(a),1)
{

_for k (0,int(b),1)
{

pjk = lngamma(da+j+1)+lngamma(db+k+1)-lngamma(da+1)-lngamma(db+1)
-j*log(ga+1.)-k*log(gb+1)+lngamma(a+b+2-j-k)
-lngamma(a-j+1)-lngamma(b-k+1)-lngamma(j+1)-lngamma(k+1)
+(a-j)*log(1+h)+(b-k)*log(1-h)
-(a+b+2-j-k)*log(ea+eb+(ea-eb)*h);

psum += exp(__tmp(pjk));
}

}
return psum/sum(psum*dh);

}
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