UNVEILING THE TRANSIENT SKY AT RADIO AND MILLIMETER WAVELENGTHS

TARRANEH EFTEKHARI
NASA EINSTEIN FELLOW
NASA HUBBLE SYMPOSIUM 2023
SEPTEMBER 20, 2023

Northwestern

RADIO OBSERVATIONS OF SUPERNOVAE: UNIQUELY PROBING THEIR PROGENITORS AND ENVIRONMENTS

EARLY TIMES:

EARLY TIMES:

EARLY TIMES:

OFF-AXIS JETS HAVE NOT YET SPREAD INTO OUR LINE OF SIGHT

LATE TIMES (~5-100 YEARS):

WHAT ARE THE CENTRAL ENGINES RESPONSIBLE FOR POWERING RARE CLASSES OF SUPERNOVAE?

WHAT ARE THE MASS-LOSS HISTORIES AND CSM DENSITIES OF TYPE II SUPERNOVAE?

LARGE SURVEY OF SUPERLUMINOUS SUPERNOVAE WITH THE VLA AND ALMA

36 SLSNe with ages spanning 1 - 19 years (Eftekhari+ 2021)

- 1. Connection to FRBs
- 2. Central engines: relativistic jets or magnetar wind nebulae
- 3. Obscured star-formation

A RADIO SOURCE COINCIDENT WITH A SUPERLUMINOUS SUPERNOVAE

Evidence for central engine-powered emission?

PTF10HGI ~8 YEARS POST-EXPLOSION

EFTEKHARI+2019

RADIO - X-RAY FOLLOW-UP OBSERVATIONS, INCLUDING AN ARECIBO

SEARCH FOR FAST RADIO BURSTS!

Short timescale variability — a scintillating compact object?

0.6 GHz 1.2 GHz

15 GHz 22 GHz

Flux Density [μ]y]

PROBING THE MASS-LOSS HISTORY AND CSM DENSITY OF TYPE II SUPERNOVAE

EFTEKHARI+IN PREP

PROBING THE MASS-LOSS HISTORY AND CSM DENSITY OF TYPE II SUPERNOVAE

CMB EXPERIMENTS OFFER AN UNTAPPED VIEW OF THE MILLIMETER TRANSIENT SKY

PRESENT DAY LANDSCAPE OF MM TRANSIENTS SPANS MANY ORDERS OF MAGNITUDE IN LUMINOSITY

EFTEKHARI+2022

PRESENT DAY LANDSCAPE OF MM TRANSIENTS SPANS MANY ORDERS OF MAGNITUDE IN LUMINOSITY

NEXT-GEN CMB SURVEYS OFFER WIDE-FIELD, DAILY CADENCE MAPS

ACT (97 - 148 GHz; 40% of sky)
SPT-3G (95 - 220 GHz; 30% of sky)
SIMONS OBSERVATORY (90 - 150 GHz; 10 - 40% of sky)
CMB-S4 (30 - 270 GHz; 50% of sky, daily cadence!)

"Because of its great potential to advance general astrophysics and open discovery space, it is essential that CMB-S4 produce transient alerts..."

ASTRO2020 DECADAL

CHARACTERIZING THE TRANSIENT DETECTION LANDSCAPE WITH CMB SURVEYS

 $(Gpc^{-3} yr^{-1})$ 0.2^{+0.02}a LGRB, On-Axis $\mathbf{0.8}^{+0.1\,\mathrm{a}}_{-0.1}$ LGRB, $\theta_{\rm obs} = 0.4$ $3.0^{+0.5a}_{-0.3}$ LGRB, $\theta_{\rm obs} = 0.8$ $0.1^{+0.01}_{-0.01}$ LGRB high energy, On-axis $0.4^{+0.04a}_{-0.04}$ LGRB high energy, $\theta_{\rm obs} = 0.4$ $1.5^{+0.2a}_{-0.2}$ LGRB high energy, $\theta_{\rm obs} = 0.8$ $\mathbf{1.3}^{+0.4a}_{-0.3}$ SGRB, On-Axis **5.0**^{+1.7}a SGRB, $\theta_{\rm obs} = 0.4$ $\mathbf{0.03}^{+0.04}_{-0.02}$ TDE, On-Axis TDE, Off-Axis (spherical) NSM: stable remnant 2.5^{a} **FBOTs** 70

Transient

 $\mathcal{R}(z=0)$

CHARACTERIZING THE TRANSIENT DETECTION LANDSCAPE WITH CMB SURVEYS

- Detection rates dominated by long GRBs
- Small number of FBOTS/TDES
- Short GRBs

Transient	$\mathcal{R}\ (z=0)$
	$(\mathrm{Gpc}^{-3}\ \mathrm{yr}^{-1})$
LGRB, On-Axis	0.2 ^{+0.02} a
LGRB, $\theta_{\rm obs} = 0.4$	0.8 ^{+0.1} a
LGRB, $\theta_{\rm obs} = 0.8$	3.0 ^{+0.5} a
LGRB high energy, On-axis	$0.1^{+0.01}_{-0.01}$
LGRB high energy, $\theta_{\rm obs} = 0.4$	$0.4^{+0.04}_{-0.04}$
LGRB high energy, $\theta_{\rm obs} = 0.8$	1.5 ^{+0.2a}
SGRB, On-Axis	1.3 ^{+0.4} a
SGRB, $\theta_{\rm obs} = 0.4$	5.0 ^{+1.7} a
TDE, On-Axis	$0.03^{+0.04}_{-0.02}$
TDE, Off-Axis (spherical)	3_{-2}^{+4b}
NSM: stable remnant	2.5 ^a
FBOTs	70

EFTEKHARI+2022

KEY SCIENCE QUESTIONS ADDRESSED WITH CMB SURVEYS

- 1) How common is reverse shock emission in long gamma-ray bursts?
- 2) What fraction of tidal disruption events produce relativistic jets?
- 3) What drives the radio/millimeter diversity of fast blue optical transients?

FAST RADIO BURST KEY PROPERTIES

- Millisecond duration bursts of radio emission
- All-sky rate >~1000 FRBs per day

- Repeating vs apparently one-off events
- Complex burst morphologies
- Some exhibit scatter broadening
- Energies spanning $\sim 10^{35} 10^{43} {\rm erg}$

HERTA-EXPERIMENT.ORG/FRBSTATS/

HOST ENVIRONMENTS PROVIDE INSIGHT INTO FRB PROGENITORS

GORDON,...,TE,+ 2023

EFTEKHARI+ 2023

FAST AND FORTUNATE FOR FRB FOLLOW-UP (F4)

THE FIRST LARGE CENSUS OF FAST RADIO BURST HOST GALAXIES WITH GEMINI

Gemini Large and Long Program (PI: Eftekhari) to obtain redshifts for 200 FRB host galaxies!

Probing 0.01 L* to L* galaxies across a wide range of redshifts

Constraining the baryon content in the CGM and IGM to high-precision with well-mapped foreground structures

CONCLUSIONS

Late-time radio transient phase space is largely unexplored...until now! Direct probes of central engines; constraints on massive star evolution

CMB surveys poised to open a new window into the transient sky at millimeter wavelengths; expect large numbers of long GRB detections, some TDEs, FBOTs, short GRBs

Host localizations are key for elucidating FRB progenitors; moving into the large N era where we can start to answer this question!

teftekhari@northwestern.edu