Kavli Institute
for Cosmological Physics
at The University of Chicago

w, \ ‘a

NASA Hubble
Fellowship Program




1s based on

general relativity

A

X5

the geometry of spacetime

NASA

This means that gravity is described by

Modern cosmology




1s based on

general relativity

Modern cosmology

This means that gravity is described by

the geometry of spacetime

1

4

_87TG
o

G

NASA



Gravitational lensing

Galaxy images are distorted due to
massive objects in the foreground

galaxy cluster

_~lensed galaxy images
—

This is known as gravitational lensing

We measure this effect across the sky,
which is related to the distribution of
matter in the Universe

distorted light-rays

—

{

Credit: NASA, ESA & L. Calcada



How do we do this?

We need to know the predicted signature for
different theoretical models.
This is where simulations come in

Using N-body simulations, we can run a
variety of different cosmological models

"G _ e
Springel et. al (2005)

Then we can compare each lensing signal with
our observations to see which one fits best
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But ...
Typically, these are Newtonian N-body
simulations, which means there is no
Interaction between matter and space-time
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How do we do this?

But ...
Typically, these are Newtonian N-body
simulations, which means there is no
Interaction between matter and space-time

Newtonian
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The Newtonian gravitational potential is used 4 g - Wk A S A
to preaict the general-relativistic lensing ey
signal




These approximations are justified:
Einstein’s equations are very difficult
to solve

Especially for a highly complex,
nonlinear matter distribution

Our approx. have proven to be very
useful, but, our standard model *does*
have some issues




Visible

martter
Dark o 57
natter w
27 %
»

Reneral relativity + -
approximationg =

63c
DArkK
enerqgy

Credit: NASA



Visible
maftter

Dark . 5%

natter

i
J

General relativity[+ -

e e e — —— » -

aprxig -

637c
DArkK
enerqgy

Credit: NASA



~a~appro><|mahong' -

L_...:—._w.:;,-_— T S — - =

DArk
natter

Isible
atter

5%

637c

Dark
enerqgy

Credit: NASA






Luckily... we have a way to remove
all common physical approximations
for GR in cosmology!




Numerical relativity

Inspiral Merger Ring-
f down
U \ | ' Macpherson et. al (2017-2019)
1 — Numerical relativity 7 Macpherson & Heinesen (2021)
Abbott et. al (2016 (ol glom®
s Reconstructed (template o (2016) 1 Heinesen & Macpherson (2022)

Giacomazzo et. al (2011)

Allows us to remove common

simplifying assumptions

about gravity and geometry
by solving Einstein’s
equations directly

Mertens et. al (2016),
Giblin et. al (2016),
Tian et. al (2021)
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In N-body simulations, the left hand side is separated from the right hand side

Numerical relativity allows us to maintain communication between the left and right
hand sides, thus achieve nonlinearity of both matter and space-time

Macpherson et. al (2019)



Now we can study the true paths of ligh alistic, inhomogeneous space-time




Now we can study the true paths of light ra istic, inhomogeneous space-time

See Macpherson (2023) for details



Now we can study the true paths of light rays ir istic, inhomogeneous space-time

Using the geodesic equation

dkH
ds

+Th kk° =

See Macpherson (2023) for details



There are several impacts of weak
lensing on the images we observe

One of them is the convergence,
which Is essentially a magnification of
sources w.r.t their true distance

Gravitational lensing

Fleury 2015 (PhD thesis)



See Macpherson (2023) for details



Lensing convergence at redshift z = 0.5 in a numerical relativity simulation

0.01 0.015

Macpherson (2024; in prep)



RT kappa at z = 0.5

Macpherson (2024; in prep)

Approx kappa at z = 0.5

0.015

We want to compare this lensing map in
full GR (top) to some kind of commonly-
used approximation

It is very common to use an integral of the
density field in the simulation along the
line of sight. This gives the lower map.

They look very similar by eye, but there is
a “small” difference in the power spectra



Numerical relativity simulations of large-scale structure formation give us

a cosmic web as well as all of the information about the underlying
geometry

> ‘} F VWe can use these simulations to stress test the founding assumptions
- ‘ Of standard cosmology
| .

Z,‘m We can also use them to study general relativistic observables

In an assumption-free framework

VVe are working on comparing the weak lensing convergence signal in
an NR simulation to a widely-used approximation

While there is a small difference - | am currently doing thorough tests to
see If this result Is robust

Stay tuned!
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Raytracing in full GR

dkH v Trace the path of geodesics
F kakﬁ =0 througn the simulation
ds
v Calculate the energy of the
= —utk, o
photon as seen by a co-moving
observer
Es




v Define an infinitesimal beam of light rays, track

thelr separation along geodesic
(skipping a lot...)

v evolve Jacobl matrix equation along the geodesic

Jacobi matrix relates physical attributes of source to how its observed
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We can calculate the angular diameter
distance and redshift along a geodesic
from the simulation

Fluctuations in these quantities are
caused by the total convergence:

K = Kg T Ky T Ksw T Kisw.

(within PT with scalar only contributions)

ds® = a’(n)[—(1 + 2®)dn? + (1 — 2d)dx?]

In general, we can get this total convergence
as fluctuations in dA from our ray tracing:

DA—DA
K — —
D 4

(e.g. Fleury 2015)

Gravitational lensing - should dominate at z > 0.5 or so

B

| Xs X N
Kg = / dx(xs — x)—V P
| 0

Xs

Ks

Approximations here:

1. Poisson eq
2. Sub-horizon implies derivatives of phi are small

3 Xs X
N S S [ dx (X — 0 -1+ 200019,
0

A—

Doppler lensing

(my observers are co-moving with fluid, shouldn’t be contributing)

1+Zs 1+ZS
Ky, = v, -n+ (1 Vs - R,
H X he

Sachs-Wolfe
1 + z4

Kew = 2<I)s — cI>o | (q)o — cI)S)a
H

Integrated Sachs-Wolfe

(Second term is zero fci EdS) X 1 X
S _I_ Z S
Kicw = / d)(CID—I—Z(l S)/ dyx @',
Xs JO H x4 0

Bacon+ (2014)




Bacon+ (2014)

We can calculate the angular diameter Gravitational lensing - should dominate at z > 0.5 or so
distance and redshift along a geodesic - Yo | y -
. . | 2
from the simulation Ky = / dX (Xs — X)_ VJ_CD
| 0 Xs
Fluctuations in these quantities are 3 Xs X |
caused by the total convergence: R — HO2 Qm / dx(xs — x)=—1[1+ z(0)18, |
: 2 0 o Xs ]
K = Kg T Ky T Ksw T Kisw:
(within PT with scalar only contributions) We have the density field along each line of sight
2 2081 2 B 2
ds” = a”(ml=( +2d)dn” + (1 — 2®)dx7] Use this along with the “background” quantities

consistent with large-scale averages of the simulation
(EAS to within <1%)

In general, we can get this total convergence
as fluctuations in dA from our ray tracing:

DA—DA
K — —
D 4

(e.g. Fleury 2015)




