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ABIOTIC

We can distinguish biotic vs. abiotic samples with 90% accuracy

The algorithm can also tell degraded from fresh biotic (but we didn’t tell it how to do this!)

Allows us to search for potentially biological anomalies on other worlds
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Selection for function
I.E., EVOLUTION
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Goal: introduce an explanatory framework 
for the evolution of physical systems
+ The second law of thermodynamics is the only time-asymmetric law 
so far articulated

+ But the second law does not explicitly address the tendency for 
evolving systems to become increasingly complex with time

+ A “missing law” must be consistent with the second law but may not 
inevitably follow from it

Wong+ (in press)



Natural laws are built around 
conceptual equivalencies
Newton’s law of gravity was built upon the property of having mass

Wong+ (in press)
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What conceptual equivalencies 
underly all evolving systems?
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Examples of evolution
1 Interacting 
components

2 A way to sample 
configuration space

3 Selection 
for function

Nucleo-
synthesis

Protons, 
neutrons

Stellar fusion, supernovae, 
stellar mergers, etc.

Stability

Mineral 
evolution

Atomic 
elements

Mineral paragenesis in 
different P–T–X space

Stability

Biological 
evolution

Genes, cells, 
species, etc.

Mutations, HGT, 
recombination, etc.

Survival, 
propagation, etc.
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What are the most fundamental 
selective forces? What functions 
does the universe “care” about?
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Sources of selection
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Sources of selection
1 Static persistence

METASTABLE 
CRYSTALS 

STABLE 
IS OTOPES 

Wong+ (in press)

Configurations of matter tend to 
persist in time unless kinetically 
favorable avenues exist for their 
incorporation into more stable 
configurations



Sources of selection
1 Static persistence 2 Dynamic persistence

CONVECTION 
PATTERNS + 

CYCLONES 

WILDFIRE 

Wong+ (in press)

Emergent dynamic 
systems driven by 
thermodynamic 
dissipation Functions are 

processes that have 
causal efficacy over 
the system’s dynamic 
persistence



Sources of selection
1 Static persistence 2 Dynamic persistence 3 Novelty generation

EXAPTATION, 
E .G. , FEATHERS 

FOR FLIGHT

T
A

G
C

MUTATION 
RATE TUNING 

Wong+ (in press)

The discovery of new functions that 
promote dynamic persistence raises 
a system’s “kinetic barrier” against 
decay to equilibrium 



Given a functional view of evolving 
systems, what is an auspicious ontology 

for a law of increasing complexity?
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Definition of ‘functional information’
Given a system x and a degree of function Ex

F(Ex) is the fraction of all possible configurations of the system that 
possess a degree of function >Ex 

The functional information [bits] of the system is:

Why would I(Ex) change with time?

I(Ex) = –log2[F(Ex)]

Szostak 2003; Hazen+ 2007; Wong+ (in press)
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Configuration space expansion
Wong+ (in press)
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+ As a highly reactive oxidant, O2 also provided 
a new set of selective criteria for persistence 


+ Consequent selection pressures arising from 
aerobic biology

S T R E N G T H E N I N G 
S E L E C T I O N P R E S S U R E S  



We propose a new natural law: the law of 
increasing functional information

The functional information 
of a system will increase 
(i.e., the system will evolve) 
if many different config-
urations of the system are 
subjected to selection for 
one or more functions
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