

We can distinguish biotic vs. abiotic samples with 90% accuracy The algorithm can also tell degraded from fresh biotic (but we didn't tell it how to do this!)

The algorithm can also tell **degraded** from **fresh** biotic (but we didn't tell it how to do this!) Allows us to search for **potentially biological anomalies** on other worlds

We can distinguish biotic vs. abiotic samples with 90% accuracy The algorithm can also tell degraded from fresh biotic (but we didn't tell it how to do this!)

The algorithm can also tell **degraded** from **fresh** biotic (but we didn't tell it how to do this!) Allows us to search for **potentially biological anomalies** on other worlds

A Robust, Agnostic Biosignature

BASED ON MACHINE LEARNING AND PYR-GC-MS

H. JAMES
CLEAVES II

GRETHE HYSTAD

ANIRUDH PRABHU

MICHAEL L. WONG

ROBERT M.
HAZEN

SOPHIA ECONOMON

GEORGE D.
CODY

ON THE FUNCTION & SELECTION IN EVOLVING ROLES OF FUNCTION & SELECTION SYSTEMS

MICHAEL L. WONG

CAROL E.
CLELAND

DANIEL ARENDS, JR.

STUART BARTLETT

H. JAMES CLEAVES II

ROBERT M.
HAZEN

JONATHAN I.
LUNINE

ANIRUDH PRABHU

HEATHER DEMAREST

+ The second law of thermodynamics is the only time-asymmetric law so far articulated

- + The second law of thermodynamics is the only time-asymmetric law so far articulated
- + But the second law does not explicitly address the tendency for evolving systems to become increasingly complex with time

- + The second law of thermodynamics is the only time-asymmetric law so far articulated
- + But the second law does not explicitly address the tendency for evolving systems to become increasingly complex with time
- + A "missing law" must be consistent with the second law but may not inevitably follow from it

Natural laws are built around conceptual equivalencies

Newton's law of gravity was built upon the property of having mass

AN APPLE'S FALL

PLANETARY ORBITS

ATOMS +
MOLECULES

Evolution occurs in systems which have...

1 A large number of interacting components

Evolution occurs in systems which have...

1 A large number of interacting components

Evolution occurs in systems which have...

1 A large number of interacting components

2 A way to sample configuration space

3 Selection for function

Interacting components

2 A way to sample configuration space

3 Selection for function

Interactingcomponents

2 A way to sample configuration space

3 Selection for function

Nucleosynthesis

Protons, neutrons

Stellar fusion, supernovae, stellar mergers, etc.

Stability

	Interacting components	2 A way to sample configuration space	3 Selection for function
Nucleo- synthesis	Protons, neutrons	Stellar fusion, supernovae, stellar mergers, etc.	Stability
Mineral evolution	Atomic elements	Mineral paragenesis in different <i>P-T-X</i> space	Stability

	1 Interacting components	2 A way to sample configuration space	3 Selection for function
Nucleo- synthesis	Protons, neutrons	Stellar fusion, supernovae, stellar mergers, etc.	Stability
Mineral evolution	Atomic elements	Mineral paragenesis in different <i>P-T-X</i> space	Stability
Biological evolution	Genes, cells, species, etc.	Mutations, HGT, recombination, etc.	Survival, propagation, etc.

Wong+ (in press)

What are the most fundamental selective forces? What functions does the universe "care" about?

Sources of selection

Static persistence

Configurations of matter tend to persist in time unless kinetically favorable avenues exist for their incorporation into more stable configurations

STABLE ISOTOPES

Sources of selection

Static persistence

Emergent dynamic systems driven by thermodynamic dissipation

2 Dynamic persistence

Functions are processes that have causal efficacy over the system's dynamic persistence

Sources of selection

- Static persistence
- 2 Dynamic persistence

The discovery of new functions that promote dynamic persistence raises a system's "kinetic barrier" against decay to equilibrium

3 Novelty generation

EXAPTATION,
E.G., FEATHERS
FOR FLIGHT

Given a functional view of evolving systems, what is an auspicious ontology for a law of increasing complexity?

Given a system x and a degree of function E_x

Given a system x and a degree of function E_x

 $F(E_x)$ is the **fraction of all possible configurations** of the system that possess a degree of function $>E_x$

Szostak 2003; Hazen+ 2007; Wong+ (in press)

Given a system x and a degree of function E_x

 $F(E_x)$ is the **fraction of all possible configurations** of the system that possess a degree of function $>E_x$

The functional information [bits] of the system is:

$$I(E_x) = -\log_2[F(E_x)]$$

Given a system x and a degree of function E_x

 $F(E_x)$ is the **fraction of all possible configurations** of the system that possess a degree of function $>E_x$

The functional information [bits] of the system is:

$$I(E_x) = -\log_2[F(E_x)]$$

Why would $I(E_x)$ change with time?

Strengthening selection pressures

Configuration space expansion

TOTAL CONFIGURATION SPACE

CONFIGURATIONS WITH $>E_x$

TOTAL CONFIGURATION SPACE

CONFIGURATIONS WITH $>E_x$

Example: Great Oxidation Event

CONFIGURATION SPACE EXPANSION

- + Abundant oxygen provided an extra source of component diversity
- + Atmospheric O2 provided a new source of free energy to drive combinatorial exploration

Example: Great Oxidation Event

CONFIGURATION SPACE EXPANSION

- + Abundant oxygen provided an extra source of component diversity
- + Atmospheric O2 provided a new source of free energy to drive combinatorial exploration

STRENGTHENING SELECTION PRESSURES

- + As a highly reactive oxidant, O2 also provided a new set of selective criteria for persistence
- + Consequent selection pressures arising from aerobic biology

We propose a new natural law: the law of increasing functional information

The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system are subjected to selection for one or more functions

We propose a new natural law: the law of increasing functional information

The functional information of a system will increase (i.e., the system will evolve) if many different configurations of the system are subjected to selection for one or more functions

