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Computer simulations connect what can be
directly seen with what is ultimately powering
celestial sources.

We weave the snapshots accessible to
observations
into a continuous tapestry of cosmic evolution.

Big Bang Today

* Frontiers in Lyman-alpha radiative transfer

* Zoom-in simulations and radiation
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DarkeAges

Once the temperature had cooled to below 3000K, the first atoms

formed. The p

tons from the Big Bang could now travel freely

t arent. With no stars there was no
next 400 million years are known as the Dark
pty except for clouds of hydrogen, helium
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2avier elements

scattered off
opaque once ¢

First Stars

caused the gas clouds to become ionized. Photons of light were now
he free protons and electrons, and so the Universe became

First Galaxies

The initially tiny variations in density had now become unimaginably
massive, the largest structures in the Universe. Within these huge
filaments, gas began to condense in huge discs and spheres in which
stars could form - the first galaxies
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Eventually the gas cooled and began to collapse under its own gravity.

This caused the temperature to rise until nuclear fusion started and Over thoE MVQ! "ITULtI IO@( Pntiliay and beyond,
F t th f

d. While the first stars began to shine. These are believed to have been much the galaxies interacted with one other. Near m n distort them
the Universe bigger and hotter (and therefore bluer) than our own Sun, and their light into fantastic shapes, while collisons and mergers cause sr

to grow into giants. As the Universe expanded, the rate of th
decreased. Although interactions continue, today many galaxies are relat
stable. Some are little more than giant starballs - ellipticals - while our own
Milky Way is a spira




HIGH-REDSHIFT GALAXIES EFFICIENTLY PRODUCE LYMAN-ALPHA PHOTONS
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LYMAN-ALPHA SELECTION OF HIGH-REDSHIFT GALAXIES
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LYMAN-ALPHA PHOTONS UNDERGO RESONANT SCATTERING

Scatkerinthalogy:
Analegdyin reach
Papees weithin
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Lya photons escape
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GALACTIC OUTFLOW MODELS

Central source

drives an outflow of
“wind” & the Lyg
line is redshi

 Spherical symmetry
- 1D approx. for
comp. feasibility &
simplicity
* Reality:
— 3D geometry
— Multi-scale
- Multi-phase
- Multi-physics

* A partially neutral IGM:

— Reduces the visibility of
LAES

A,V



EXTENDED LYMAN-ALPHA HALOS AROUND HIGH-REDSHIFT GALAXIES

What is the origin of Lya halos? Can we discriminate between

models?
(a) Scattered light (b) Cold streams (c) Satellite galaxies (d) fluorescence
in the CGM .
LAE LAE .. *  LAE
{,‘;-/ #&/ . ,g./
e - °

% Stars
Lya emission

Momose+16, Mas-Ribas+17

Quantitative theories for each scenario could constrain feedback
models and provide additional clues about the nature of the
circumgalactic medium (CGM).



(SOME!) FRONTIERS IN MULTI-SCALE LYMAN-ALPHA RADIATIVE TRANSFER
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COSMOLOGICAL “ZOOM-IN" SIMULATION OF A REDSHIFT 5 GALAXY (GIZMO/FIRE, Ma
et al. 2017)

Accurately model the ionizing radiation for the recombination/collisional
emission.
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ROTATING CAMERA REVEALS NONTRIVIAL SIGHTLINE DEPENDENCE (CLOUDS,
DOPPLER SHIFTS)




MORPHOLOGICAL DIFFERENCES IN THE LYMAN-ALPHA ENERGY DENSITY




TIME-DEPENDENCE OF LYMAN-ALPHA PROPERTIES



PROPERTIES OF THE EMERGENT Lya LINE
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response to the star
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PROPERTIES OF THE EMERGENT Lya LINE
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7 e, The Lya equivalent width
The Lya radial surface can be very sensitive to the
brightness is reasonably fit with telescope aperture size.
an exponential. We must be careful when
Comparison with observations comparing to observations.
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Lya EQUIVALENT WIDTH BOOSTING (Direction and Time)

The highest EW sightlines Redshifted Lya
have: (outflows)
(Higher IGM

transrlli_ssion)

M Allow escape channels
(Lower HI column

density)
—— Higher coincident UV
! EWLya (A) 170 absorption by dust

(Higher IGM
transmission)




PROSPECTS FOR THE JAMES WEBB SPACE TELESCOPE (JWST)
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Individual sources come in and
out of visibility during their
lifetimes.

(We use a 104 second exposure time.)
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cross-correlation studies may be

necessary to unravel the
detailed nronertiec of hiadh-7 | vo

Observed Flux

i =—— 50 —— 100 —— 260 —— 640 740

1000 0 1000 2000 3000
Av (km/s)



QUICK NOTE ABOUT KINEMATICS

Pre-
starburst:

Blue infall
sighature

[
o

=

Post-
starburst:

Red outflow
sighature

Fred/Fque (|SM)

Erb et al. (2018) show the spatially-resolved
kinematics of a LAE at z = 2.3, which we link to post-
starburst galactic winds.




THE ROLE OF LYMAN-ALPHA RADIATION PRESSURE

10

|FLyal/ |Ftotl

fedd

0.1 fedd = |Fryal / |Ftot|

* Lya pressure is likely to play only a minor role in the overall galactic
dynamics.

« However, we find high Eddington factors in the neutral, low-metallicity
filaments.



MULTIPLE SCATTERING ACTS AS A FORCE MULTIPLIER

Ves 100 Fr— I
Example: Lya S y: F.
trapping in the _ + Me = ] /C __
expanding shell s e
model based on - oL o Niﬂzril ]
MCRT : T log Nge20
calculations T n
(Dijkstra & Loeb e B i
2008,2009). M.=3 o %, 1000

 Other works use order of magnitude estimates based on idealized
Lya RT:
Cox (1985), Bithell (1990), Haehnelt (1995), Henney & Arthur (1998), Oh &
Haiman (2002), McKee & Tan (2008), Milosavljevic et al. (2009), Wise et al.
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Lya RADIATION PRESSURE IS DYNAMICALLY IMPORTANT FOR DCBHs

* First radiation hydrodynamics simulations with Lya
pressure

* Radiation-driven winds can be accelerated by Lya
trapping
3D post-processing analysis of a Direct Collapse Black

Hole .
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RESONANT DISCRETE DIFFUSION MONTE CARLO (rDDMC)

Discretized transfer equation
leads to a Monte Carlo
Interpretation.
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rDDMC SPEEDUP FOR 3D SIMULATIONS

We show that rDDMC 10'L Ay Resolution
also outperforms :
MCRT In more [ 200 km/s
realistic setups (for 103 | 150 km/s —
example DCBHs). 125 km/s —
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-
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Many subtle issues
and promising
solutions.
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APPLYING RADIATION HYDRODYNAMICS TO RESONANCE LINES
NN
» On the fly 3D Lya radiation hydrodynamics is feasible B e
with my new resonant discrete diffusion Monte Carlo &=
method.

Initial collapse of massive seed black holes, e.g.
DCBHs.

Line driven winds, e.g. massive stellar systems and
the circumstellar environments of binary neutron-star
mergers.




SUMMARY

* Lya sources provide clues
about galaxy formation and
evolution, CGM/IGM, large-
scale structure, and the epoch
of reionization.

* JWST/GMT/TMT/E-ELT will
extend our view into the high-z

frontier.
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