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HOW STELLAR FEEDBACK LIMITS ACCRETION ONTO MASSIVE STARS
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Massive star formation is [likely] a scaled up version of

low-mass star formation

Infrared dark cloud (IRDC) G28.53
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IRDCs can fragment intfo dense,
massive clumps which then fragment
INfo massive pre-stellar cores.

Massive pre-stellar cores are
supersonic.

PTurb =>> PTh

Observations suggest massive cores
have vy <1
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Ec G M.
Possibly supported by magnetic fields?

(e.g., Pillai+2011, Lu+2015, Zhang+2015, Ohashi+2015)



Massive star formation up close:
Stellar feedback processes

Radiation Protostellar Outflows
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NASA (Artist rendition)

R136 in the LMC (NASA) Csengari+2018

Stellar feedback — the injection of energy and momentum by stars
INnfo the ISM — can halt accretion, possibly limiting stellar masses.



Massive Star Formation up close:
Stellar feedback processes

Radiation Protostellar Oufflows Stellar winds
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NASA (Artist rendition)

R136 in the LMC (NASA) Csengari+2018

Stellar feedback — the injection of energy and momentum by stars
INnfo the ISM — can halt accretion, possibly limiting stellar masses.



Isofropic accretion leads to the radiation pressure
oarrier problem in massive star formation

Formation of massive stars is a competition between 4
gravity and (direct+indirect) radiation pressure

Gravitational Force: Radiative Force:
L
GM, Y _ 14 :
ferav(1) = Jrad 47‘(‘7“26( firap) iR )%
-
3
L, o< M ;

L 3 -
edd — - 1 —° 1 ra -
feaa = 7.7 x 1077 (1 + f; p><M*>®(1ng2>

Radiation halis isofropic accretion when fedd 2 1
for Mxz20 M

(e.g., Larson & Starrfield 1971, Kahn 1974, Yorke 1979, Yorke+1995, Wolfire & Cassinelli 1986, 1987; Yorke & Bodenheimer 1999)



Challenges in Observing Massive Star Formation (MSF) —
need to furn to (3D radiation- hydfodynomlcs) smulo’rions

How do we go from thisg 10 This?  Kroupa 2001 ] 06

== Tout+1996

Stellar Luminosity L [Lg)
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Stellar Mass M, [M]
Massive stars are rare, representing only ~1% of stars

by number but they dominate the energy budget.

Nova

(super)Nova

NOEMA CORE Program
Massive protostellar cores
with L>104 Lo and d<é kpc

Lu+2015

Infrared — WISE and Spitzer multi-A images, contours = SCUBA 850um
Beuther+2018b, CORE program

MSF regions are rare, far away (d =few kpc), and
throughout their short formartion



Challenges in Observing Massive Star Formation (MSF) —

need to turn to (3D radiation- hydfodynomlcs) smula’rions
How do we go from thisg 10 This? — Kioupa 2001 ] 1ot
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Stellar Mass M, [M]
Massive stars are rare, representing only ~1% of stars

by number but they dominate the energy budget.

(super)Nova
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Massive protostellar cores
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NOEMA 1.3 mm dust continuum
Beuther+2018b, CORE program

MSF regions are rare, far away (d =few kpc), and
throughout their short formartion



Challenges in Observing Massive Star Formation (MSF) —
need to turn to (3D radiation- hydrodynomlcs) S|mulc1’r|ons

How do we go from thisg 10 This?

Nova

Viewing angles
make all the difference

(super)Nova

)
(]
<]

NOEMA CORE Program R
Massive protostellar cores &

. IRAS23385 NGC7538IRS1 ~ NGC7538S
with L>104 Loand d<é6 kpc . G138
2t
-

"v-l ) 4
4 .

0 -5 -1010
A RA. (")

Lu+2015

NOEMA 1.3 mm dust continuum
Beuther+2018b, CORE program

MSF regions are rare, far away (d =few kpc), and
throughout their short formartion



Overcoming the radiation pressure barrier
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Mass delivered to star via infalling dense filaments, radiative

Rayleigh Taylor (RT) instabilities, and disk accretion.

High accretion rates and infalling filaments provide sufficient
ram pressure to overcome radiation pressure.




Massive Star Formation up close:
Stellar feedback processes

Radiation Protostellar Outflows

Declination
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NASA (Artist rendition)

R136 in the LMC (NASA) Csengari+2018

Stellar feedback — the injection of energy and momentum by stars
INnfo the ISM — can halt accretion, possibly limiting stellar masses.



Collimated bipolar outflows are ubiquitous in (low-mass and)
high-mass star formation
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Powerful jets from accreting stars can drive wide angle molecular
outflows from star-forming cores and eject core material



Massive star formation with

radiative and outflow feedback =~ ™Ml
M. = 0:00 M- 1013 onditions:

Mcore=150 M o
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o(r)e«r -3/2
41015 Oip=1.2 km s/
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10-17 Q
Subgrid outflow model:

~ PoF = MOFUQF
Mor = 0.21 X M,

VoF = 0.3 X Vesc

(e.g., Matzner & McKee
1999,
Cunningham+2011)
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Top panel: (40,000 AU x 40,000 AU) Rosent(in prep)
Bottom panel: (8,000 AU x 8,000 AU)



Outflows punch holes in core along the star’s polar directions allowing
radiation to escape, thereby reducing the development of RT instabillities.

Thin Density Projections:

Radiation Only Radiation+Outflows

Density: Eddington Ratio: M, = 13.82 Mo
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Outflows+radiation pressure efficient at ejecting material
away from the star than radiation pressure alone.

Radiation Only
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Disks are crucial fo massive star formation,

especially at late times.

—Turbulent Fragmentation —
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fragmentation at late times
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Outflows drive out entrained gas, eventually unbinding the core

Core properties vs. Mx
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...BUT WAITI What about magnetic fieldse

1000

M 27V/GM
He = My~ nB2

100 +~

1Bz (nG)|

10
Supercritical

pe > 1

Subcritical

0.1 & : LIl — | | ' | , U <1

10’ 102 10° 104 10° 10° 107
ny (cm™)
Crutcher+2010

Observations suggest that dense molecular gas has po~2 (supercritical).

Magnetic pressure will slow down collapse and reduce fragmentation.



Massive star formation with B-fields Initial
and radiative and outflow feedback  Conditions:
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Bottom panel: (8,000 AU x 8,000 AU)



Magnetic braking removes angular momentum resulting in a
smaller disk. Fragmentation is highly suppressed.

T
= TurbRad+OF

= « TurbRad+OF+B
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Inclusion of magnetic fields reduces final stellar mass by ~20% @ t=0.9 tt



Entrained molecular outflows are collimated, but have wider
opening angles when magnetic fields are included

Radiation+Outflows
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...but how does this

compare 1o
observations?

Courtesy of Crystal Brogan

1.0" = 1300 AU



Massive Star Formation up close:
Stellar feedback processes

Radiation Protostellar Oufflows Stellar winds
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R136 in the LMC (NASA) Csengari+2018 NASA (Arfist rendifion)

Stellar feedback — the injection of energy and momentum by stars
INnfo the ISM — can halt accretion, possibly limiting stellar masses.



Fast, Isotropic winds should shock heat gas yielding Tgas= 106 K,
gas adiabatically expands reducing dM/dt

Rad+Outflows+Winds
107 -
. ] 35
10° ; | oo + OF
] i == oo+ OF +W
] 10-14 | 301 - Ho<tW
| E ) /,/’
L V4
1 - . 25 /
i I/
1054 || o /
s 20
10715 o
x 15+
— >
T
< 10 -
104 o £
oo 6
— >~ 10
162 9 >
c >
v 0
D T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

103 t/ts

My, ~1077 =107 Mg yr!

—1
107 UW > 103 km S
1071 (Turn on winds when Tess > 12.5 kK
10° following Vink+2001 and Leitherer+1992)

<Density>m <Temperature>n  <Velocity>m
(20,000 AU)? Rosen+(in progress)




Fast, Isotropic winds should shock heat gas yielding Tgas= 106 K,
gas adiabatically expands reducing dM/dt

Rad+Outflows+Winds
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Preliminary results .... Stay funed!



Magnetic pressure confines winds, reducing shock heating and
adiabatic expansion — larger o and ¢s such that dM/df increases.

Magnetic Pressure/Thermal Pressure

M, =26.23 M, M, =27.69 M,

t=0.67 ts

Magnetic Pressure/Ram Pressure
(Pram= pv?)

Preliminary results .... Stay funed!



Magnetic pressure confines winds, reducing shock heating and
adiabatic expansion — larger o and ¢s such that dM/df increases.

Winds+ No B
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Preliminary results .... Stay funed!



Summary

Performed 3D R(M)HD simulations of the formation of massive stellar
systems from the collapse of furbulent massive pre-stellar cores with
radiative, collimated outflow, and isofropic wind feedback.

M, =33.53 Mg

Inclusion of feedback by ouiflows in addition to radiation
pressure:

* Reduces effective mass growth by ~10% than radiation
alone.

* Ejects jet and entrained material from core, results in
unbinding core. s

M. =32.72 M,

M. =32.71 Mg

Inclusion of magnetic fields in MSF:
* Slows down the growth of massive stars

* Significantly reduces formation of companions
via turbulent fragmentation.

* Leads tfo wider collimated molecular outflows.

* When winds are included, leads to a positive
(¢) feedback effect (at least at early times)
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What about weak magnetic fleldse
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... Sdtay tuned!



