Intro/Motivation	Thermal State	Hard State	Applications	Discussion

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Jeremy Schnittman

Johns Hopkins University

Einstein Fellows Symposium Harvard CfA, October 27, 2009

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation ●○○○	Thermal State	Hard State	Applications O	Discussion

GEMS: Gravity and Extreme Magnetism SMEX

- Approved for "phase A" funding in recent round of SMEX proposals
- \bullet Sensitive down to $\lesssim 1\%$ at 1 milliCrab (10^6 s exposure)
- Energy bandwidth of 2-10 keV
- Energy resolution of 2 keV
- If approved, could launch in 2012

 Intro/Motivation
 Thermal State
 Hard State
 Applications
 Discussion

 ••••
 ••••
 ••••
 ••••
 ••••
 ••••

GEMS: Gravity and Extreme Magnetism SMEX

- Selected for full funding in recent round of SMEX proposals
- Sensitive down to $\lesssim 1\%$ at 1 milliCrab (10⁶ s exposure)
- Energy bandwidth of 2-10 keV
- Energy resolution of \sim 2 keV
- If Now approved, could will launch in 2012 2015 2014

GEMS: Gravity and Extreme Magnetism SMEX

- Image pixels are formed by readout strip pitch (y) and drift velocity/sampling rate (x)
- Quantum efficiency (depth) is perpendicular to readout (drift) direction

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation ○○○●	Thermal State 0000	Hard State	Applications ○	Discussion
Description of	f model			

- disk parameters:
 - BH mass M
 - BH spin a/M
 - accretion rate $\dot{M}/\dot{M}_{\rm Edd}$
 - emissivity profile
- corona parameters:
 - temperature, density profile $T_c(r)$, $\rho_c(r)$
 - coronal geometry (sandwich, clumpy, sphere, etc.)
 - optical depth to Compton scattering $\tau_{\rm es}$
- observer parameters:
 - inclination
 - distance to source

Plane polarization from a thermal disk is rotated by relativistic beaming and gravitational lensing

- $M = 10 M_{\odot}$
- N-T emission
- $L = 0.1 L_{\rm Edd}$

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation	Thermal State ○●○○	Hard State	Applications ○	Discussion
D				

Return radiation near the BH changes the polarization signature significantly

direct only

direct+return

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Return radiation near the BH changes the polarization signature significantly

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation	Thermal State 0000	Hard State ●○○○○	Applications O	Discussion
Hard X-rays c	ome from	inverse-Compton	scattering ir	na

hot corona

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

æ Jeremy Schnittman

Э

Intro/Motivation	Thermal State	Hard State	Applications	Discussion
		0000		

Scattering through optically thin corona rotates net polarization angle

e.g. Sunyaev & Titarchuk (1985)

Haardt & Matt (1993)

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation	Thermal State	Hard State	Applications	Discussion
		00000		

Corona scattering preferentially changes polarization angle of high-energy photons

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation	Thermal State	Hard State ○○○●○	Applications O	Discussion

Polarization as probe of coronal properties

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation	Thermal State	Hard State ○○○○●	Applications O	Discussion

clumpy coronas

।≣। ≡ ୬९० Jeremy Schnittman

< 🗇 >

문 🕨 🖈 문

Intro/Motivation	Thermal State	Hard State	Applications •	Discussion

Applications/Future Work

- New polarization measurements will allow us to
 - probe plunging region
 - estimate coronal properties
 - infer emissivity profiles (Fe K α lines)
 - measure BH spin
 - measure geometry of accretion flow in NS's
- 3-D numerical MHD simulations (Noble, Krolik, & Hawley 2008)
 - develop realistic heating, cooling functions
 - define electron temperature everywhere
 - self-consistently calculate inverse-Compton spectrum and polarization
- Fitting observations
 - Green's function-type transfer
 - orthogonal basis of fitting functions to minimize parameter degeneracy
 - fold through *GEMS* response function, develop XSPEC packages for data analysis

Emissivity in the plunging region

Inside the ISCO, the gas follows geodesic trajectories determined by E and ℓ at the ISCO, yet with (possibly) non-zero emissivity.

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Emission inside ISCO reduces sensitivity on spin

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

니콜▶ 클 ∽)요(Jeremy Schnittman

"first-generation" polarimeter: $\delta \sim 1\%$, $\Delta E/E \sim 1$ (contours are 1σ confidence intervals)

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

measurements

"next-generation" polarimeter: $\delta \sim 0.3\%$, $\Delta E/E \sim 0.1$

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

Intro/Motivation	Thermal State	Hard State	Applications ○	Discussion ○○○○●
spherical co	oronas			
10.0 (%) bolautzatton degree (%)	R=5M R ^m =10M R ^m =15M R ^m =20M	100 (6sp) előte ugyarta 100 -100 -100 -100	B _m =5M B _m =10M B _m =15M 1.0 E _{ces} (keV)	10.0

X-ray Polarization: The Dawn of a New Age in Black Hole Astrophysics

।≣। ≡ ୬९० Jeremy Schnittman

▲ロン ▲御と ▲注と ▲注と