
CXC Newsletter

CIAO in 2015-16:
Work Behind the Scenes Plus Scripts,
PSF and Sherpa Python Package

Antonella Fruscione and Douglas Burke
for the CIAO team

The demand for CIAO (the Chandra Data Analy-
sis software) remains steady since 2011 with about

100-150 downloads per month, and has been stron-
ger than ever since the CIAO 4.8 release in December
2015. Chandra and non-Chandra users continue to
take advantage of the growing capabilities that CIAO
has to offer and of the extensive documentation which
accompany them!

CIAO 4.8—released in Dec 2015 and patched in
February 2016—is the latest software release and was
primarily a maintenance release to address needed
upgrades behind the scenes: bug fixes, support of new
compilers and upgrade of off-the-shelf software used
in the system.

This release also includes additional support for the
analysis of observations in Continuous Clocking (CC)
mode that directly affects users: both the acis_process_
events and the tg_resolve_events tool have been updat-
ed to allow for better calibration of ACIS+HETG data
taken in CC mode. The chandra_repro script has also
been upgraded to take advantage of these changes.

With every major CIAO release a large effort goes
into updating all the relevant documentation on the
website and in the tools’ help files to ensure that any
software change is properly reflected in the text. Fur-
thermore, at release time and during the year, new
documents are written not only to support and explain
changes in software, but also in response to questions
or comments from the community.

The HETG/ACIS-S/CC-Mode Grating Spectra
thread, published in Dec. 2015, belongs to the first
category and was newly created to help users working
with ACIS/HETG observations in CC mode. The new
“Why topic” Pitfalls using PIMMS for Observed Data
and the FAQ entry What does “zero length polygon line
segment” warning mean? are two recent documents be-
longing to the second category.

The “Why topic” highlights the issues that arise from
using PIMMS, the Portable Interactive Multi-Mission
Simulator, and the CXC proposal planning counterpart
to estimate fluxes from observed count rates. Spe-
cifically, the report addresses the fact that for bright

sources and especially for large surveys the system-
atic errors introduced by using PIMMS may become
significant and introduce a bias into the results. The
new FAQ addresses in detail the reason for a common
warning seen while running CIAO tools.

The appearance and the behaviour of the main CIAO
download page (the first entry point for the majority
of users) has been restructured in CIAO 4.8, with a
clearer and more prominent “standard install” button
and more precise custom installation options for users
with specific needs. The goal is first and foremost to
make any part of CIAO, including the installation, as
easy as possible for users.
CIAO scripts

In the spirit of making CIAO more accessible to all
users—including users who are not X-ray astronomy
specialists—we have continued the development and
improvement of the high level programs (the CIAO
“scripts”), which have the goal of simplifying the most
common types of analysis.

Several scripts were released in the past months, but
three are especially worth noting here: download_ob-
sid_caldb, install_marx, and simulate_psf.

Several HelpDesk tickets have reported problems
downloading CALDB due to size (3 Gb zipped, 7.5 Gb
unzipped). In reality only a small fraction of the Chan-
dra CALDB is needed to analyze any given ObsID.

The download_obsid_caldb script determines which
CALDB files are necessary for a given ObsID and
downloads only those missing from the user’s existing

Figure 1: CIAO monthly download statistics since 2011

http://cxc.cfa.harvard.edu/ciao/dictionary/ccmode.html
http://cxc.cfa.harvard.edu/ciao/ahelp/acis_process_events.html
http://cxc.cfa.harvard.edu/ciao/ahelp/acis_process_events.html
http://cxc.cfa.harvard.edu/ciao/ahelp/tg_resolve_events.html
http://cxc.cfa.harvard.edu/ciao/ahelp/chandra_repro.html
http://cxc.harvard.edu/ciao/threads/spectra_hetgacis_cc/
http://cxc.harvard.edu/ciao/threads/spectra_hetgacis_cc/
http://cxc.harvard.edu/ciao/why/pimms.html
http://cxc.harvard.edu/ciao/faq/polygon_zero_warning.html
http://cxc.harvard.edu/ciao/faq/polygon_zero_warning.html
https://heasarc.gsfc.nasa.gov/docs/software/tools/pimms.html
https://heasarc.gsfc.nasa.gov/docs/software/tools/pimms.html
http://cxc.harvard.edu/toolkit/pimms.jsp
http://cxc.harvard.edu/ciao/download/scripts/
http://cxc.harvard.edu/ciao/download/scripts/
http://cxc.cfa.harvard.edu/ciao/ahelp/download_obsid_caldb.html
http://cxc.cfa.harvard.edu/ciao/ahelp/download_obsid_caldb.html
http://cxc.cfa.harvard.edu/ciao/ahelp/install_marx.html
http://cxc.cfa.harvard.edu/ciao/ahelp/simulate_psf.html
http://cxc.cfa.harvard.edu/ciao/ahelp/download_obsid_caldb.html

CXC Newsletter

CALDB. The files are added to user's standard CIAO
CALDB location and users can accumulate CALDB
files as needed, ObsID by ObsID. It is particularly
helpful for users with less-than-fully-reliable internet
connections where downloading a multi-GB file can
time out. For example, using the new download_ob-
sid_caldb script for one ObsID will decrease the
size of the necessary download to ~0.3 GB, whereas
downloading the entire CALDB would have required
~7.5GB. If the user also needs background files, down-
load_obsid_caldb would result in ~0.35 GB instead of
the 13 GB required to download the entire CALDB
with background files.

The two other scripts aim to simplify the simulation
of the Chandra PSF:

The install_marx script automates the standard
steps necessary to download, build, and install MARX.
(the Chandra on-orbit simulator), while simulate_psf
wraps the complexity of the thread in which MARX is
used to simulate an existing observation. The script’s
design and interface will allow other simulators in
the future (e.g. SAOTrace) and currently accepts ray-
files generated by ChaRT (the CXC web interface to
SAOTrace) as input. Both scripts are part of the major
effort to collect and disseminate information about the
Chandra PSF described below.
PSF Central

The documentation project called “PSF Central”
represents an effort to unify under one umbrella the
wealth of information about the Chandra PSF (dictio-
nary, ahelp files, threads, Why documents etc.) that
was previously scattered around the CIAO webpages.
The PSF Central website is currently organized in a

Figure 2: A schematic view of the PSF modeling
paths: while MARX can be used for both ray trac-
ing and projecting onto a detector-specific plane,
the rays produced by SAOTrace or ChaRT require
an extra step to project the rays onto a detec-
tor-specific plane (via MARX) or onto a semi-in-
finite detector-plane (via psf_project_ray). The
psf_project_ray tool produces an events file as
output, while the marx2fits routine should be
used after running a MARX simulation to obtain
an event file. The simulate_psf script current-
ly covers the steps on the left column (MARX +
marx2fits) and can project and produce an event
file if rayfiles from ChaRT are given as input.

tool-centric direction (what tools exist related to the
Chandra PSF) but future plans are to extend it toward
a more science-centric direction (e.g., is my source ex-
tended? is this jet real? etc.).

Within PSF Central we endeavor to better explain
the relationship between SAOTrace, ChaRT, and
MARX while simplifying installation and use of these
applications.

The two scripts mentioned above, together with a
new release of ChaRT that allows for simulations com-
patible with sub-pixel analysis, are instrumental in
achieving this goal.

Several science threads have also been updated or
written anew to clarify the use of ChaRT and MARX
to simulate existing or planned observations.
Sherpa Python Fitting

While Sherpa (the Chandra modelling and fitting
application) is an integral part of CIAO, a close read-
ing of last year’s “15 years in CIAO” Chandra newslet-
ter article (Fruscione et al. 2015) will have revealed our
parallel project of moving it to the code-development
site GitHub so that its development is open to every-
one. In this environment, Sherpa can be used for gen-
eral fitting and can be built independently of the CIAO
infrastructure. The project can be found at https://
github.com/sherpa/sherpa/. The first major release
from this work was Sherpa 4.8.0, which is available as
a part of the CIAO 4.8 release, as well as directly from
GitHub. The newest release, Sherpa 4.8.1, occurred in
April 2016.

The primary aims of these releases are to make Sher-
pa easier to include in other Python projects and to al-
low users to import the Sherpa module into a Python

http://cxc.cfa.harvard.edu/ciao/ahelp/download_obsid_caldb.html
http://cxc.cfa.harvard.edu/ciao/ahelp/download_obsid_caldb.html
http://cxc.cfa.harvard.edu/ciao/ahelp/download_obsid_caldb.html
http://cxc.cfa.harvard.edu/ciao/ahelp/download_obsid_caldb.html
http://cxc.harvard.edu/ciao/ahelp/install_marx.html
http://space.mit.edu/CXC/MARX/
http://cxc.harvard.edu/ciao/ahelp/simulate_psf.html
http://cxc.harvard.edu/cal/Hrma/SAOTrace.html
http://cxc.harvard.edu/ciao4.8/PSFs/chart2/
http://cxc.harvard.edu/ciao/PSFs/psf_central.html
https://github.com/sherpa/sherpa/
https://github.com/sherpa/sherpa/

CXC Newsletter

session. Sherpa is available via the
Sherpa Anaconda channel for those
who use the Anaconda distribution,
as well as directly from GitHub. The
plan is to have several minor releas-
es throughout 2016, leading up to a
major release in December, which
will be coordinated with the next
CIAO release. The individual Sher-
pa releases are also archived by the
Zenodo Science Archive, thanks to
its integration with GitHub. As an
example, the details of the Sherpa
4.8.0 release are available at https://
zenodo.org/record/45243.

As befitting our move to a world
in which everything is tracked, we
now have a number of helpful visu-
alizations to show how development
is progressing, such as this “Punch
Card” view (hopefully this will not
provide painful memories for those readers “lucky”
enough to have programmed with actual punch cards):

It is unclear, at this time, whether the lunch talk held by
the High-Energy Division here at the Center for Astro-
physics can explain the drop off in Sherpa work around
mid-day Wednesday. More data is obviously needed!

The preferred installation location for Sherpa is
within the Anaconda Python environment. To install
Sherpa into a separate environment (called “sherpa” in
this example), one could use the following:
% conda config --add channels
https://conda.anaconda.org/sherpa
% conda create -n=sherpa python=2.7
sherpa matplotlib astropy ipython
% source activate sherpa
Additional installation methods are available, for

example, to also build the optional XSPEC model in-
terface, and are described on the standalone Sherpa
page at http://cxc.cfa.harvard.edu/contrib/sherpa/.

For anyone interested in using Sherpa in their own
project, or adding new functionality, please head on
over to https://github.com/sherpa/sherpa/, download
the code, and start coding! Development and integra-
tion of Sherpa with Astropy will go forward during the
summer through the work of a student participating in
the “Google Summer of Code” project. ■

Figure 3: “Punch Card” view from Sherpa GitHub

How to stay up-to-date
about CIAO and Sherpa

Several channels are available to keep abreast of
CIAO and any new development or problems:

@ChandraCIAO
ChandraCIAO
+ChandraCIAO

• Subscribe to the Chandra Electronic
Announcements at http://cxc.harvard.
edu/cdo/udb/userdat.html

• Check “What’s New” http://cxc.harvard.
edu/ciao/news.html or subscribe to
the CIAO News RSS feed at http://
cxc.harvard.edu/ciao/feed.xml

• Check the YouTube channel "4ciaodemos" at
http://www.youtube.com/user/4ciaodemos

Questions to the Sherpa team at the CXC can be
made either through the GitHub web site or via the
CXC HelpDesk.

https://zenodo.org/record/45243
https://zenodo.org/record/45243
http://cxc.cfa.harvard.edu/contrib/sherpa/
https://twitter.com/chandraciao
https://www.facebook.com/pages/Chandra-CIAO/398626126963760
https://plus.google.com/u/1/106646243896552205567/about
http://cxc.harvard.edu/cdo/udb/userdat.html
http://cxc.harvard.edu/cdo/udb/userdat.html
http://cxc.harvard.edu/ciao/news.html
http://cxc.harvard.edu/ciao/news.html
http://cxc.harvard.edu/ciao/feed.xml
http://cxc.harvard.edu/ciao/feed.xml
http://www.youtube.com/user/4ciaodemos
https://github.com/sherpa/sherpa/
http://cxc.harvard.edu/helpdesk/

CXC Newsletter

Figure 4: A quick comparison between the different modeling tools available to Chandra users

CIAO Workshop - 15 August 2016

The CXC is soliciting interest in a one-day CIAO workshop on August 15, 2016 just prior to the start of the
Chandra Science for the Next Decade workshop. Depending on the level of interest, the workshop may be
extended into the morning of August 16. The CIAO workshop will be tailored to the attendees but usually
consists of a few talks in the morning with ample time in the afternoon for hands-on sessions with CXC
experts to assist individuals with their specific data analysis questions.

Possible topics for the talks include:
• Introduction to X-ray astronomy
• Advanced CIAO
• Topics in Chandra Calibration
• Intro or Advanced Sherpa
• Intro or Advanced MARX
• Intro or Advanced ds9

Users interested in attending the CIAO
Workshop can find more information at:
http://cxc.harvard.edu/ciao/workshop/index.html

http://cxc.harvard.edu/ciao/workshop/index.html

CXC Newsletter

% ipython --classic --no-banner --pylab
Using matplotlib backend: Qt4Agg
>>> from sherpa.astro import ui
WARNING: failed to import sherpa.astro.xspec;
XSPEC models will not be available
>>> import numpy as np
>>> x = np.arange(-5, 5.1)
>>> y = x*x + 23.2 +
 np.random.normal(size=x.size)
>>> e = np.ones(x.size)
>>> ui.load _ arrays(1, x, y, e)
>>> ui.plot _ data()
>>> ui.set _ model(ui.polynom1d.poly)
>>> print(poly)

polynom1d.poly
 Param Type Value Min Max Units
 ----- ---- ----- --- --- -----
 poly.c0 thawed 1 -3.40282e+38 3.40282e+38
 poly.c1 frozen 0 -3.40282e+38 3.40282e+38
 poly.c2 frozen 0 -3.40282e+38 3.40282e+38
 poly.c3 frozen 0 -3.40282e+38 3.40282e+38
 poly.c4 frozen 0 -3.40282e+38 3.40282e+38
 poly.c5 frozen 0 -3.40282e+38 3.40282e+38
 poly.c6 frozen 0 -3.40282e+38 3.40282e+38
 poly.c7 frozen 0 -3.40282e+38 3.40282e+38
 poly.c8 frozen 0 -3.40282e+38 3.40282e+38
 poly.offset frozen 0 -3.40282e+38 3.40282e+38

>>> ui.thaw(poly.c1, poly.c2)
>>> ui.fit()
Dataset = 1
Method = levmar
Statistic = chi2
Initial fit statistic = 12653.3
Final fit statistic = 3.22478 at function evaluation 8
Data points = 11
Degrees of freedom = 8
Probability [Q-value] = 0.919469
Reduced statistic = 0.403098
Change in statistic = 12650.1
 poly.c0 23.4186
 poly.c1 -0.107496
 poly.c2 1.02587
>>> ui.plot _ fit _ delchi()

see figure to the right

An example Sherpa run through
Once installed in the python environment, Sherpa can be imported like any python module. In the following
example, we demonstrate fitting of a low-order polynomial to randomized data (this example is based on the
“Quick Start” IPython notebook guide provided with Sherpa, which can be found at http://nbviewer.jupyter.
org/github/sherpa/sherpa/blob/master/docs/SherpaQuickStart.ipynb). The warning message lets us know that
the version of Sherpa being used does not include the XSPEC models interface, and the --classic and --no-
banner flags are used to simplify the screen output of IPython:

http://nbviewer.jupyter.org/github/sherpa/sherpa/blob/master/docs/SherpaQuickStart.ipynb
http://nbviewer.jupyter.org/github/sherpa/sherpa/blob/master/docs/SherpaQuickStart.ipynb

CXC Newsletter

>>> ui.conf()
poly.c0 lower bound: -0.455477
poly.c0 upper bound: 0.455477
poly.c2 lower bound: -0.0341394
poly.c1 lower bound: -0.0953463
poly.c2 upper bound: 0.0341394
poly.c1 upper bound: 0.0953463
Dataset = 1
Confidence Method = confidence
Iterative Fit Method = None
Fitting Method = levmar
Statistic = chi2gehrels
confidence 1-sigma (68.2689%) bounds:
 Param Best-Fit Lower Bound Upper Bound
 ----- -------- ----------- -----------
 poly.c0 23.4186 -0.455477 0.455477
 poly.c1 -0.107496 -0.0953463 0.0953463
 poly.c2 1.02587 -0.0341394 0.0341394
>>> ui.reg _ proj(poly.c0, poly.c2, nloop=[21, 21])
see figure to the right

