Introduction to Fitting ASCII Data with Errors: Single-Component Source Models

Sherpa Threads (CIAO 3.4)

Table of Contents

- Getting Started
- Reading ASCII Data \& Errors Into Sherpa
- Plotting Data
- Establishing a Model Component
- Defining a Source Model Expression
- Viewing Method \& Statistic Settings
- Thawing Model Parameters \& Fitting
- Plotting \& Examining Fit Results
- Linking Model Parameters
- Independently Fitting a Second Dataset
- Checking Sherpa Session Status
- Exiting Sherpa
- History
- Images
- Sherpa LPLOT command after manipulation by ChIPS
- 1st order polynomial fit to the data
- 2nd order polynomial fit to the data
- 3rd order polynomial fit to the data
- Plotting the fit and residuals
- Fitting using linked model parameters
- Fitting a second dataset

Introduction to Fitting ASCII Data with Errors: Single-Component Source Models

Sherpa Threads

Overview

Last Update: 1 Dec 2006 - reviewed for CIAO 3.4: no changes
Synopsis:
This thread provides a detailed introduction to Sherpa. 1-D data from an ASCII datafile are empirically fit with polynomials, then also fit with a given polynomial function. In addition, a second 1-D ASCII dataset is input and fit with a polynomial.

Proceed to the HTML or hardcopy (PDF: $\underline{\mathbf{A 4} \mid \text { letter) version of the thread. }}$

Getting Started

Please follow the "Sherpa Threads: Getting Started" thread.

Reading ASCII Data \& Errors Into Sherpa

In this thread, we wish to fit 1-D data from the following ASCII dataset:

Sherpa>	\$more	data1.dat
0.5	1.6454	0.04114
1.5	1.7236	0.04114
2.5	1.9472	0.04114
3.5	2.2348	0.04114
4.5	2.6187	0.04114
5.5	2.8642	0.04114
6.5	3.1263	0.04114
7.5	3.2073	0.04114
8.5	3.2852	0.04114
9.5	3.3092	0.04114
10.5	3.4496	0.04114

This dataset is input into Sherpa using the READ command:

```
sherpa> READ DATA datal.dat 1 2
sherpa> SHOW DATA
Y Column: Counts
    Dimensions: 1
    Total Size: }11\mathrm{ bins (or pixels)
    Axis: 0; Name: Bin
    Length: }11\mathrm{ bins (or pixels)
```

Fitting ASCII Data - Sherpa

File Name: datal.dat		
SubSection		
File Type: ASCII		
$[0.500000]$	$=$	1.6454
$[1.500000]$	$=$	1.7236
$[2.500000]$	$=$	1.9472
$[3.500000]$	$=$	2.2348
$[4.500000]$	$=$	2.6187
$[5.500000]$	$=$	2.8642
$[6.500000]$	$=$	3.1263
$[7.500000]$	$=$	3.2073
$[8.500000]$	$=$	3.2852
$[9.500000]=$	3.3092	
$[10.50000]=$	3.4496	

The third column of the dataset, which contains the errors, is input with the READ ERRORS command:

```
sherpa> READ ERRORS data1.dat 1 3
```


Plotting Data

Now the dataset may be plotted:

sherpa> LPLOT DATA

The CIAO software package includes a plotting tool called ChIPS (Chandra Imaging and Plotting System). ChIPS plotting commands are available for use within Sherpa and may be useful for modifying the appearance of plots:

```
sherpa> XLABEL "X = Off-Axis (arcmin)"
sherpa> YLABEL "F(X) = SNR"
sherpa> REDRAW
```

The ChIPS commands XLABEL and YLABEL add labels to the X and Y axes, respectively. Note that the command REDRAW must be issued to update the display. Figure 1 FO] shows the resulting plot.

Establishing a Model Component

We wish to fit these data using a polynomial. The Sherpa model name for a 1-D polynomial function is POLYNOM1D. Note that the entire of list of all models available within Sherpa may be obtained by typing ahelp models.

The POLYNOM1D model component is established and it is named model1 in this session.

```
sherpa> POLYNOM1D[model1]
model1.c0 parameter value [2.5475]
model1.cl parameter value [0]
model1.c2 parameter value [0]
model1.c3 parameter value [0]
model1.c4 parameter value [0]
modell.c5 parameter value [0]
modell.c6 parameter value [0]
model1.c7 parameter value [0]
model1.c8 parameter value [0]
model1.offset parameter value [0]
```

Since a dataset has already been input, Sherpa estimates the initial parameter values (and the minimum and

Fitting ASCII Data - Sherpa

maximum for their ranges) for this model based on the data. If a dataset had not been previously input, the parameter values of the model would be set to the defaults. Sherpa then prompts the user for changes to these estimates. In this example, we accept the initial parameter value estimates by hitting <RETURN> at each parameter value prompt. Sherpa prompts for the parameter values if PARAMPROMPT is ON.

The SHOW command may be used to examine the details of the established model component:

sherpa> SHOW modell						
	Param	Type	Value	Min	Max	Units
1	c0	thawed	2.5475	-1.6454	3.4496	
2	c1	frozen	0	-18.042	18.042	
3	c2	frozen	0	-1.8042	1.8042	
4	c3	frozen	0	-1.6454	3.4496	
5	c4	frozen	0	-1.6454	3.4496	
6		frozen	0	-1.6454	3.4496	
7	c6	frozen	0	-1.6454	3.4496	
8	c7	frozen	0	-1.6454	3.4496	
9	c8	frozen	0	-1.6454	3.4496	
10	offset	frozen	0	-0.5	10.5	

Note from the above output that this model component is set to (integrate: on) by default. INTEGRATE allows to turn on the integration of the model over the bin with ON/OFF options. However, even if (integrate: on), no integration will be performed when fitting unbinned data, such as that contained in dataset data1. dat. That is, no integration will be performed when fitting data that is not input as HISTOGRAM or that is not PHA or imaging data. For clarity, integration is turned off below and the model values are taken at the center of the bin:

sherpa> modell INTEGRATE OFF sherpa> SHOW modell						
polynom1d[modell] (integrate: off						
	Param	Type	Value	Min	Max	Units
1	c0	thawed	2.5475	-1.6454	3.4496	
2	c1	frozen	0	-18.042	18.042	
3	c2	frozen	0	-1.8042	1.8042	
4	c3	frozen	0	-1.6454	3.4496	
5	c4	frozen	0	-1.6454	3.4496	
6	c5	frozen	0	-1.6454	3.4496	
7	c6	frozen	0	-1.6454	3.4496	
8	c7	frozen	0	-1.6454	3.4496	
9	c8	frozen	0	-1.6454	3.4496	
10	offset	frozen	0	-0.5	10.5	

Defining a Source Model Expression

In order to fit the dataset with the model component that has been established, the model must be defined as the source model expression to be used for fitting:

```
sherpa> SOURCE = model1
```

The current definition of Sherpa's source model expression may be examined using SHOW SOURCE:

Fitting ASCII Data - Sherpa

2	c1	frozen	0	-18.042	18.042
3	c2	frozen	0	-1.8042	1.8042
4	c3	frozen	0	-1.6454	3.4496
5	c4 frozen	0	-1.6454	3.4496	
6	c5	frozen	0	-1.6454	3.4496
7	c6 frozen	0	-1.6454	3.4496	
8	c7 frozen	0	-1.6454	3.4496	
9	c8 frozen	0	-1.6454	3.4496	
10	offset frozen	0	-0.5	10.5	

This output shows that modell is currently defined as the source model expression.

Viewing Method \& Statistic Settings

We use Sherpa's default optimization method and statistics for these polynomial fits. The SHOW command may be used to view the current method and statistics settings:

Further details about the Levenberg-Marquardt optimization method are available by typing:

```
sherpa> ahelp lev-mar
```

Further details about the Chi-Squared Gehrels statistic are available by typing:

```
sherpa> ahelp chiqehrels
```


Thawing Model Parameters \& Fitting

To start, we wish to fit these data with a first-order polynomial. The c1 parameter of model1 needs to be thawed so that it will be allowed to vary during the fit:

```sherpa> THAW model1.c1 sherpa> SHOW SOURCE Source 1: model1 polyld[modell] (integrate: off)```						
	Param	Type	Value	Min	Max	Units
1	c0	thawed	2.5475	-1.6454	3.4496	
2	c1	thawed	0	-18.042	18.042	
3	c2	frozen	0	-1.8042	1.8042	
4	c3	frozen	0	-1.6454	3.4496	
5	c4	frozen	0	-1.6454	3.4496	
6	c5	frozen	0	-1.6454	3.4496	
7	c6	frozen	0	-1.6454	3.4496	
8	c 7	frozen	0	-1.6454	3.4496	

Fitting ASCII Data - Sherpa

9	c8 frozen	0	-1.6454	3.4496
10	offset frozen	0	-0.5	10.5

The dataset is then fit:

```
sherpa> FIT
LVMQT: V2.0
LVMQT: initial statistic value = 2815.14
LVMQT: final statistic value = 151.827 at iteration 5
 model1.c0 1.58227
 model1.c1 0.198455
```

To plot the fit:

## sherpa> LPLOT FIT

The appearance of the plot may be modified as follows:

```
sherpa> C 2 SIMPLELINE
sherpa> XLABEL "X = Off-Axis (arcmin)"
sherpa> YLABEL "F(X) = SNR"
sherpa> REDRAW
```

The ChIPS command C 2 SIMPLELINE changes the plot of the fit from a histogram to a line (which is red by default). The other ChIPS commands add labels. Figure 2 shows the resulting plot.

Next, we wish to fit these data with a second order polynomial. The c 2 parameter of model1 needs to be thawed so that it will be allowed to vary during the fit:

```
sherpa> THAW model1.c2
sherpa> FIT
LVMQT: V2.0
LVMQT: initial statistic value = 151.827
LVMQT: final statistic value = 59.0027 at iteration 4
 model1.c0 1.30826
 model1.c1 0.347303
 model1.c2 -0.0135317
```

To plot the fit:

```
sherpa> LPLOT FIT
sherpa> C 2 SIMPLELINE
sherpa> XLABEL "X = Off-Axis (arcmin)"
sherpa> YLABEL "F(X) = SNR"
sherpa> REDRAW
```

Figure 3 雨 shows the resulting plot.
Finally, we wish to fit these data with a third order polynomial. The c3 parameter of modell therefore needs to be thawed so that it will be allowed to vary during the fit. The data is then fit again and plotted:

```
sherpa> THAW model1.c3
sherpa> FIT
LVMQT: V2.0
LVMQT: initial statistic value = 59.0027
LVMQT: final statistic value = 30.8491 at iteration 5
 model1.c0 1.49843
 model1.c1 0.1447
 model1.c2 0.0322936
 model1.c3 -0.00277729
sherpa> LPLOT FIT
sherpa> C 2 SIMPLELINE
sherpa> XLABEL "X = Off-Axis (arcmin)"
```

sherpa> YLABEL "F $(\mathrm{X})=$ SNR"
sherpa> REDRAW

Figure 4 ( ${ }^{-1}$ shows the resulting plot.

## Plotting \& Examining Fit Results

A plot of both the fit and residuals may be created as follows:
sherpa> LPLOT 2 FIT RESIDUALS
Various modifications may be made to these plots:

```
sherpa> # Change the data and fit plots in the lst drawing
sherpa> # area to block symbols, and a line, respectively:
sherpa> D 1 C 1 NOLINE
sherpa> D 1 C 2 SIMPLELINE
sherpa>
sherpa> # Modify the Y Axis limits of the 2nd drawing area:
sherpa> D 2 LIMITS Y -2.5 2.5
sherpa>
sherpa> # Add a labels to the X and Y Axes:
sherpa> XLABEL "X = Off-Axis (arcmin)"
sherpa> D 1 YLABEL "F(X) = SNR"
sherpa>
sherpa> # Add a title:
sherpa> TITLE "ACIS 25000 Counts Per Chip"
sherpa>
sherpa> # Make all labels and titles the same color (default is white in ChIPS window,
sherpa> # but prints as black):
sherpa> TITLE DEFAULT
sherpa> D 1 YLABEL DEFAULT
sherpa> D 2 YLABEL DEFAULT
sherpa> D 2 XLABEL DEFAULT
sherpa>
sherpa> # Remove the X Axis label from the 1st drawing area:
sherpa> D 1 XLABEL ""
sherpa>
sherpa> # Place a separation between the two drawing areas:
sherpa> SPLIT GAP y 0.04
sherpa>
sherpa> # Remove the X Axis tick marks from the lst drawing area:
sherpa> D 1 TICKVALS X OFF
sherpa>
sherpa> # Change the format of the tick value labels on the Y Axes:
sherpa> D 1 TICKVALS Y "%1.2f"
sherpa> D 2 TICKVALS Y "%1.2f"
sherpa>
sherpa> # Add a label that contains the fit results:
sherpa> D 1 LABEL 2.0 1.7 "F (X)=(1.4984)+(0.1447)X+(0.0323) X^2+(-0.0028) X^3"
sherpa>
sherpa> REDRAW
```

Note that comments may be entered on the Sherpa command line if they are preceded by a pound sign (\#). Further information about each of these ChIPS commands is available by typing ahelp <command name>.

Figure 5 , may be saved as a PostScript file:
sherpa> PRINT POSTFILE sherpa.basic.5.ps
To view estimates of the confidence intervals for the thawed parameters, use the PROJECTION command:

Fitting ASCII Data - Sherpa


For information on the chi-squared goodness-of-fit, use the GOODNESS command:

```
sherpa> GOODNESS
Goodness: computed with Chi-Squared Gehrels
DataSet 1: 11 data points -- 7 degrees of freedom.
Statistic value = 30.8491
Probability [Q-value] = 6.62868e-05
Reduced statistic = 4.40701
```


## Linking Model Parameters

Instead of empirically fitting a polynomial to the data as before, we now wish to fit a first order polynomial such that the offset constant parameter is the following product:

```
offset = 4.3979 * c1
```

where $c 1$ is the first order coefficient and $4.3979=\log (25000)$.
First, another POLYNOM1D model component is established and is named model2:

```
sherpa> PARAMPROMPT OFF
Model parameter prompting is off
sherpa> POLYNOM1D[model2]
```

Since a dataset has been previously input, Sherpa estimates the initial parameter values (and the minimum and maximum for their ranges) for this model based on the data. The command PARAMPROMPT OFF cancels prompting for changes to these model parameter value estimates.

The SHOW command may again be used to examine the details of the established model component:

sherpa> SHOW model2 polynom1d[model2] (integr						
	Param	Type	Value	Min	Max	Units
1	c0	thawed	2.5475	-1. 6454	3.4496	
2	c1	frozen	0	-18.042	18.042	
3	c2	frozen	0	-1.8042	1.8042	
4	c3	frozen	0	-1.6454	3.4496	
5	c4	frozen	0	-1.6454	3.4496	
6	c5	frozen	0	-1.6454	3.4496	
7	c 6	frozen	0	-1.6454	3.4496	
8	c 7	frozen	0	-1.6454	3.4496	
9	c8	frozen	0	-1.6454	3.4496	
10	offset	frozen	0	-0.5	10.5	

## Fitting ASCII Data - Sherpa

As was the case with model1, this model component is set to (integrate: on) by default. However, no integration will be performed when fitting unbinned data, such as that contained in dataset data1. dat. For clarity, integration is also turned off for this model:
sherpa> model2 INTEGRATE OFF
Next, we change the source model expression to be the model component that we have just established (model2):
sherpa> SOURCE $=$ model2
For a first order polynomial fit, we thaw the c1 parameter of model2:
sherpa> THAW model2.c1
To set the offset constant parameter to the desired product given above, the offset parameter of model2 is linked to the value of the c 1 parameter:

```
sherpa> model2.offset => (model2.c1)*(4.3979)
```

The source model expression for fitting is:


The dataset is then fit:

```
sherpa> FIT
LVMQT: V2.0
LVMQT: initial statistic value = 2815.14
LVMQT: final statistic value = 151.827 at iteration 5
 model2.c0 1.75548
 model2.c1 0.198455
```

To plot the fit:
sherpa> LPLOT FIT
The appearance of the plot may be modified as follows:

```
sherpa> C 2 SIMPLELINE
sherpa> XLABEL "X = Off-Axis (arcmin)"
sherpa> YLABEL "F(X) = SNR"
sherpa> REDRAW
```

Figure 6FA0 shows the resulting plot.

To compare the fit obtained using model2 to the fit obtained using model1, the command SHOW MODELS is issued:

```
sherpa> SHOW MODELS
--
```

Fitting ASCII Data - Sherpa


One may also wish to obtain the chi-squared goodness-of-fit for this fit and compare it with that of the previous fit (shown in the Plotting \& Examining Fit Results section):

```
sherpa> GOODNESS
Goodness: computed with Chi-Squared Gehrels
DataSet 1: 11 data points -- 9 degrees of freedom.
Statistic value = 151.827
Probability [Q-value] = 3.68791e-28
Reduced statistic = 16.8697
```


## Independently Fitting a Second Dataset

Finally, we wish to fit a different dataset, again using a first order polynomial.
This dataset and its errors are input into Sherpa using the READ command:

```
sherpa> READ DATA 2 data2.dat 1 }
sherpa> READ ERRORS 2 data2.dat 1 3
```

Note that by issuing these commands as READ 2, the first dataset is not overwritten. Instead, the new data are input as dataset 2 .

Dataset 2 may now be plotted:

```
sherpa> LPLOT DATA 2
sherpa> XLABEL "X = Off-Axis (arcmin)"
sherpa> YLABEL "F(X) = SNR"
sherpa> REDRAW
```

Yet another POLYNOM1D model component is established for use, this time named model3:

## Fitting ASCII Data - Sherpa

sherpa> POLYNOM1D[model3]
Since parameter prompting has previously been turned off, the user is not prompted for the initial model parameter values.

Next, we set the source model expression to be model3 for dataset 2 :

```
sherpa> SOURCE 2 = model3
sherpa> model3 INTEGRATE OFF
```

For a first order polynomial fit, we thaw the c1 parameter of model3:

```
sherpa> THAW model3.c1
```

Dataset 2 is then fit using the SOURCE 2 model expression:

```
sherpa> FIT 2
LVMQT: V2.0
LVMQT: initial statistic value = 2534.99
LVMQT: final statistic value = 38.7541 at iteration 4
 model3.c0 2.30466
 model3.c1 0.177985
```

And this fit is plotted:
sherpa> LPLOT FIT 2
sherpa> 2 SIMPLELINE
sherpa> XLABEL "X $=$ Off-Axis (arcmin)"
sherpa> YLABEL "F $(X)=$ SNR"
sherpa> REDRAW

Figure 7 相 shows the resulting plot.
For information on the chi-square goodness-of-fit, use the GOODNESS command:

```
sherpa> GOODNESS 2
Goodness: computed with Chi-Squared Gehrels
DataSet 2: 11 data points -- 9 degrees of freedom.
Statistic value = 38.7541
Probability [Q-value] = 1.27581e-05
Reduced statistic = 4.30601
```

Note that fitting this second dataset with the model3 polynomial did not affect the previous fit of the first dataset with the model2 polynomial.

## Checking Sherpa Session Status

The final overall status of this Sherpa session may be viewed as follows:

```
sherpa> SHOW
Optimization Method: Levenberg-Marquardt
Statistic: Chi-Squared Gehrels
Input data fi
Input data files:
Data 1: data1.dat ascii 1 2.
Total Size: 11 bins (or pixels)
```

Fitting ASCII Data - Sherpa

Dimensions: 1   Total counts (or values): 29.411500							
Current errors for dataset 1:							
READ ERRORS datal.dat 13							
Data 2: data2.dat ascii 12.							
Total Size: 11 bins (or pixels)							
Dimensions: 1							
Total counts (or values): 36.119300							
Current errors for dataset 2:							
READ ERRORS 2 data2.dat 13							
Defined analysis model stacks:							
source $1=$ model2							
source 2 = model3							
Defined source/background model components:							
polyld[modell] (integrate: off)							
	Param	Type	Value	Min	Max		Units
1	c0	thawed	1.4984	-1.6454	3.4496		
2	c1	thawed	0.1447	-18.042	18.042		
3	c2	thawed	3.2294e-02	-1.8042	1.8042		
4	c3	thawed	-2.777e-03	-1. 6454	3.4496		
5	c4	frozen	0	-1.6454	3.4496		
6	c5	frozen	0	-1.6454	3.4496		
7	c6	frozen	0	-1.6454	3.4496		
8	c7	frozen	0	-1.6454	3.4496		
9	c8	frozen	0	-1.6454	3.4496		
	offset	frozen	0	-0.5	10.5		
polyld[model2] (integrate: off)							
	Param	Type	Value	Min	Max		Units
1	c0	thawed	1.7555	-1. 6454	3.4496		
2	c1	thawed	0.1985	-18.042	18.042		
3	c2	frozen	0	-1.8042	1.8042		
4	c3	frozen	0	-1.6454	3.4496		
5	c4	frozen	0	-1.6454	3.4496		
6	c5	frozen	0	-1.6454	3.4496		
7	c 6	frozen	0	-1.6454	3.4496		
8	c7	frozen	0	-1.6454	3.4496		
9	c8	frozen	0	-1.6454	3.4496		
	offset	link	0.8728	express	(model2.c1	4.3979)	
poly1d[model3] (integrate: off)							
	Param	Type	Value	Min	Max		Units
1	c0	thawed	2.3047	-1. 6454	3.4496		
2	c1	thawed	0.178	-18.042	18.042		
3	c2	frozen	0	-1.8042	1.8042		
4	c3	frozen	0	-1.6454	3.4496		
5	c4	frozen	0	-1.6454	3.4496		
6		frozen	0	-1.6454	3.4496		
7	c6	frozen	0	-1.6454	3.4496		
8	c 7	frozen	0	-1.6454	3.4496		
9	c8	frozen	0	-1.6454	3.4496		
	offset	frozen	0	-0.5	10.5		

## Exiting Sherpa

To exit the current Sherpa session:

```
sherpa> BYE
Goodbye.
```


## History

14 Jan 2005 reviewed for CIAO 3.2: no changes
21 Dec 2005 reviewed for CIAO 3.3: no changes
01 Dec 2006 reviewed for CIAO 3.4: no changes

## Image 1: Sherpa LPLOT command after manipulation by ChIPS



## Image 2: 1st order polynomial fit to the data



## Image 3: 2nd order polynomial fit to the data



## Image 4: 3rd order polynomial fit to the data

data1.dat


## Image 5: Plotting the fit and residuals

ACIS 25000 Counts Per Chip


## Image 6: Fitting using linked model parameters



## Image 7: Fitting a second dataset



