Sherpa S-Lang Module — Sherpa

Introduction to the Sherpa S—Lang Module

VAR | :\;(\

7 I 4 A Y Y

Sherpa Threads (CIAO 3.4)

Introduction to the Sherpa S—-Lang Module

Sherpa S-Lang Module — Sherpa

Table of Contents

* Introduction

« Fitting a PHA Spectrum
¢ Loading Data and Responses
¢ Filtering Data and Subtracting Background
¢ Defining a Source Model
¢ Fitting
¢ Examining Fit Results
¢ Scripting the Procedure
« Fitting and Plotting ASCII Data with Errors
¢ Loading Data and Errors
¢ Plotting the Data
¢ Defining a Source Model and Fitting
¢ Plotting the Fit
¢ Expanding the Possibilities with a Script
» A Note on sherpa_eval
« History
* Images
¢ Plot of data retrieved by "get" functions
¢ Plot of data and fit retrieved by "get" functions
¢ Plot created by "polyfit.sI"

2 Table of Contents

Sherpa S-Lang Module — Sherpa

URL.:_http://cxc.harvard.edu/sherpa/threads/module_intro/ Last modified: 1 Dec 2006

Introduction to the Sherpa S—Lang Module

Sherpa Threads

Overview

Last Update: 1 Dec 2006 - reviewed for CIAO 3.4: no changes

Synopsis:

The Sherpa S-Lang module is an extension to Sherpa that allows one to employ its full capabilities from within

S-Lang script or another S—Lang—enabled application (such as ChIPS). This thread provides an introduction tc
the module via some example applications.

Read this thread if:

You want to be able to customize and extend Sherpa via S—-Lang functions and scripts or use Sherpa's
functionality in another S—Lang—enabled application.

Related Links:

e The_sherpa-module ahelp page

» Sherpa and Scripts

 Accessing fit results using S-Lang
A Guide to the S-Lang Language

Proceed to the HTML or hardcopy (PDE: A4 | letter) version of the thread.

Introduction

The_Sherpa S—Lang module allows the user to employ Sherpa's full functionality from within a S—Lang script or
another S—Lang—enabled application (such as ChIPS). This permits one to enhance other applications with
Sherpa's features and (more importantly) to extend the capabilties of Sherpa beyond its design without altering
Sherpa itself. Hence, the Sherpa S—Lang module lets the user break free of the "black box" model and enhance
Sherpa to meet his or her specific needs.

This thread introduces the Sherpa S—-Lang module by guiding the user through some basic examples of its use.
also provides example scripts that users may download and modify to suit their own needs. For more examples
scripts that use the Sherpa module, see the Sherpa section of the CIAQ scripts page. For an introduction to the

S-Lang programming language, see A Guide to the S—Lang Language.

Introduction to the Sherpa S-Lang Module 3

http://cxc.harvard.edu/sherpa/threads/module_intro/
http://www.jedsoft.org/slang/doc/html/slang.html
http://www.jedsoft.org/slang/doc/html/slang.html

Sherpa S-Lang Module — Sherpa

The Sherpa S—-Lang module is available automatically within a Sherpa session and in scripts run by the sherpa
executable. To use the module in external applications, one must load it using the import function. For example,
within ChIPS:

|chips> import(“sherpa") |
Or, within an slsh script:

unix% more myscript
#!/usr/bin/env slsh

import("sherpa");

For more information on driving Sherpa with S—-Lang scripts, see the Sherpa and Scripts thread.

Fitting a PHA Spectrum
As our first example, we will perform a basic fit to a PHA spectrum. The data and procedure are identical to those

used in the_Introduction to Fitting PHA Spectra thread. However, we will perform the fit using only functions
from the Sherpa S—Lang module.

Loading Data and Responses

To begin, we load the spectrum file using load_dataset:

sherpa> load_dataset("3c273.pi")
1

Notice that "1" was printed to the screen. This is the return value of the function; "1" indicates success, while "0"
would indicate failure (e.g. if the file did not exist). In scripts, you should usually check a function's return value,
as a failure condition generally means that a script must abort or enter an error-handling mode. Here, we will
simply discard return values using the syntax "() = ...". For example, we could have discarded the "1"

returned by load_dataset as follows:

|sherpa> () = load_dataset("3c273.pi") |
Note that the type and meaning of return values differ between functions, and some functions return nothing at all.
For more information on return values for a particular function, see the function's ahelp file.

Since header keywords in the file 3c273.pi specify associated RMF. ARF, and background files,
load_dataset automatically loads these files and establishes an appropriate instrument model. We can verify
this by issuing the SHOW command:

sherpa> SHOW

Optimization Method: Levenberg—Marquardt
Statistic: Chi-Squared Gehrels

Input data files:

4 Fitting a PHA Spectrum

Sherpa S-Lang Module — Sherpa

Data 1: /data/sherpa/pha_intro/3c273.pi.
Total Size: 46 bins (or pixels)
Dimensions: 1

Total counts (or values): 736

Exposure: 38564.61 sec

Count rate: 0.019 cts/sec

Backscal: 2.526436e-06

Background 1: /data/sherpa/pha_intro/3c273_bg.pi.
Total Size: 1024 bins (or pixels)

Dimensions: 1

Total counts (or values): 216

Exposure: 38564.61 sec

Count rate: 0.006 cts/sec

Backscal: 1.872535e-05

The data are NOT background subtracted.

Defined analysis model stacks:

instrument source 1 = respo2
instrument back 1 = respo2

Defined instrument model components:

rspld[respo2]
Param Type Value Min Max Units

1 rmf string: "3¢c273.rmf"* (N_E=1090,N_PHA=1024)
2 arf string: "3c273.arf" (N_E=1090)

Filtering Data and Subtracting Background

Next, we establish an energy filter (selecting energies in the range 0.1-6.0 keV) using the set_notice function
and subtract the background data using set_subtract:

sherpa> () = set_notice(.0.1.6.0)

sherpa> () = set_subtract
Note that in the set_notice call, a comma appears before 0.1. This is necessary because set_notice

actually takes three parameters: dataset number, lower bound, and upper bound. If the first parameter is empty
above), the dataset number defaults to 1.

Defining a Source Model

To establish a source model, we use the function set_source_expr:

|sherpa> () = set_source_expr("xsphabs[abs]*powlawld[p1]") |
This creates the specified source model using the default parameter values for each model component. Note th
set_source_expr does not prompt for parameter values, regardless of the setting_of PARAMPROMPT.

Next, we set the hydrogen column density in the abs model component (with set_par) and freeze the

Filtering Data and Subtracting Background 5

Sherpa S-Lang Module — Sherpa
component (with set_frozen):

sherpa> () = set_par("abs.nh","value",0.07)
sherpa> () = set_frozen("abs")

We can verify that the source model has indeed been established using SHOW:

sherpa> SHOW source

(abs * p1)
xsphabs[abs] (XSPEC model name: phabs) (integrate: off)
Param Type Value Min Max Units

1 nHfrozen 7e-02 1e-07 10 10**22 atoms/cm**2
powlawld[pl] (integrate: on)

Param Type Value Min Max Units
1 gamma thawed 1 -10 10
2 ref frozen 1 0.1248 5.9057

3 ampl thawed 7.9256e-06 7.9256e—-08 7.9256e-04

Fitting

We now fit the model using the function run_fit:

sherpa> good = run_fit

LVMQT: V2.0

LVMQT: initial statistic value = 355.854

LVMQT: final statistic value = 37.9079 at iteration 10
pl.gamma 2.1585
pl.ampl 0.000224838

Examining Fit Results

After performing the fit, run_fit calls get_goodness, which returns a S—Lang structure that contains
information about the quality of the fit. We have stored this structure in a S—Lang variable named good (the
name is arbitrary) and can display its contents using the Varmm function print:

sherpa> print(good)
dataset =1
datatype = source
stat = 37.9079
numbins = 44
dof = 42

rstat = 0.902569
gval = 0.651155

We can also access individual fields of the good structure using the syntax <structname>.<fieldname>.
For example, we can store the statistic value in a S—Lang variable named statval and save it for future use:

sherpa> statval = good.stat
sherpa> print(statval)
37.9079

Since run_fit returns goodness—of-fit information automatically, there is no need to issue the GOODNESS
command. For more information on using fit results, see the thread "Accessing fit results using S-Lang".

Fitting

Sherpa S-Lang Module — Sherpa

We can obtain confidence intervals for our model parameters using run_cov, the S-Lang equivalent of the
COVARIANCE command:

sherpa> conf = run_cov

Computed for sherpa.cov.sigma = 1

Parameter Name Best-Fit Lower Bound Upper Bound

pl.gamma 2.1585 -0.0827851 +0.0827851
pl.ampl 0.000224838 -1.48256e-05 +1.48256e-05

run_cov returns an array of structures, which we have stored in the variable conf. Each element of the array
contains the confidence interval for one parameter, which we can display_using print:

sherpa> print(conf[0])
name = pl.gamma
val = 2.1585

vlo = 2.07571

vhi = 2.24128
sigma =1

sherpa> print(conf[1])
name = pl.ampl
val = 0.000224838
vlo = 0.000210012
vhi = 0.000239663
sigma =1

Scripting the Procedure

Although it is entirely valid to use Sherpa module functions from the Sherpa command line (as we have done sc
far in this thread), they provide few advantages over traditional Sherpa commands during interactive use. The n
benefit of the Sherpa S—Lang module is that it allows one to harness the full capabilities of Sherpa from within &

S-Lang script.

The S—-Lang script phafit.sl contains all the commands used above to fit our example spectrum:

unix% more phafit.sl

() = load_dataset("3c273.pi");

() = set_notice(,0.1,6.0);

() = set_subtract();

() = set_source_expr("xsphabs[abs]*powlawld[p1]");
() = set_par("abs.nh","value",0.07);

() = set_frozen("abs");

variable good = run_fit();

variable conf = run_cov();

Note that within a S—Lang script, each statement must end with a semi—colon, and variables must be declared |

the variable keyword) before use. (These requirements, which are a standard part of the S-Lang language, are
relaxed at the Sherpa command line.)

To run this script from the Sherpa command line, use the evalfile function. Note that if you are still working
in the same Sherpa session as above, you will have to start a new session or issue the command "ERASE ALL

before running the script:

[sherpa> () = evalfile("phafit.sI") |

Scripting the Procedure

Sherpa S-Lang Module — Sherpa
For more information on running S—Lang scripts, see the Sherpa and Scripts thread.

Fitting and Plotting ASCII Data with Errors

As our second example, we will demonstrate more of the Sherpa maqdule's set and get functions by

reproducing part of the Introduction to Fitting ASCII Data with Errors thread. Then, we will show how the Sherpa
module can be used to extend the capabilities of Sherpa by providing a S—Lang script that displays three different
fits to a dataset on a single plot.

Loading Data and Errors

The ASCII data file we want to use contains three columns. The first is the independent variable (x), the second is
the depedent variable (y), and the third is error in the dependent variadie (y

unix% more datal.dat
0.5 1.6454 0.04114
1.5 1.7236 0.04114
2.5 1.9472 0.04114
3.5 2.2348 0.04114

None of the Sherpa module's load functions can handle a file in this format, so we will have to use set
functions to load the data.

First, we read in the file using the Varmm function readfile:

|sherpa> dat = readfile("datal.dat") |

readfile returns a S—Lang structure that holds both "metadata” about the file (e.g. file name and format) and
arrays containing the actual data columns:

sherpa> print(dat)

_filename = datal.dat
_path = /data/sherpa/basic/
_filter = NULL
_filetype =1

_header = NULL
_nhcols =3

_nrows =11

coll = Float_Type[11]
col2 = Float_Type[11]
col3 = Float_Type[11]

For ASCII files, the column array names correspond to the order in which the columns appear in the file (coll is
the first column, col2 is the second column, etc.). We can examine the contents of a column array using the

print function:

sherpa> print(dat.coll)
0.5
15
25
35

8 Fitting and Plotting ASCII Data with Errors

Sherpa S-Lang Module — Sherpa

It is also possible to select and use individual array elements using the syntax <arrayname>[<index>].
Since S-Lang array indices start at zero, we can print the third element of the coll array as follows:

sherpa> print(dat.col1[2])
25

We now have to load the data arrays into Sherpa. To do this, we use three functions: set axes to load the
independent-variable column, set_data to load the dependent-variable column,_and set_errors to load the
errors:

sherpa> () = set_axes(dat.coll)
sherpa> () = set_data(dat.col2)
sherpa> () = set_errors(dat.col3)

To confirm that the data have been loaded, we can issue the SHOW command:

sherpa> SHO

Input data files:

dataset 1 loaded via S-Lang module

Plotting the Data

We now want to plot the data. The simplest way to do this using a Sherpa module function is to call the LPLOT
command via sherpa_eval:

|sherpa> () = sherpa_eval("LPLOT DATA") |
However, a more flexible and potentially powerful approach is to use get functions to obtain the data and the
curve function to plot it. First, we obtain the dataspace, data, and errors using get_axes. get_data, and

get_errors, respectively:

sherpa> x = get _axes
sherpa>y = get _data
sherpa>y_err = get_errors
get_data and get_errors return simple arrays containing the relevant data. However, get_axes returns a

structure:

sherpa> print(x)

axistype = Channels
axisunits = bin

lo = NULL

hi = NULL

mid = Double_Type[11]

If we were using binned data (e.g. from a PHA spectrum), the mid field would be NULL, and the lo and hi

fields would be arrays containing the lower and upper boundaries, respectively, for each bin. However, since we
are using unbinned data, lo and hi are NULL, and mid is an array containing the independent—axis gridpoints.
Since this array is all we want, we store it in the variable x, overwriting the structure returned by get_axes:

|sherpa> X = X.mid |
We are now ready to plot the data. To do this, we use three functions from the ChIPS S-Lang module:

Plotting the Data 9

Sherpa S-Lang Module — Sherpa
chips_clear to clear the plot window, curve to plot the curve, and chips_redraw to draw the plot:

sherpa> chips_clear
sherpa> () = curve(x.y.y_err)
sherpa> chips_redraw

The resulting plg@ shows the datapoints and error bars. Although it is possible to customize the output of
curve using the ChIPS state object, for now we accept the defaults.

Defining a Source Model and Fitting

Next, we define our source model and fit the data. This time, we will create the desired model component first
using_create_model and then make it our source model using set_source_expr:

sherpa> () = create_model("polynom1d","modell1")
sherpa> () = set_source_expr("modell")

Then, we thaw the c1 parameter (first—order coefficient in our polynomial) and fit, discarding the
goodness—of-fit information that run_fit returns:

sherpa> () = set_thawed("modell.c1")

sherpa> () = run_fit

LVMQT: V2.0

LVMQT: initial statistic value = 2815.14

LVMQT: final statistic value = 151.827 at iteration 5
modell.cO 1.58227
modell.c1 0.198455

Plotting the Fit

Finally, we wish to plot the resulting fit. First, we retrieve the data to plot using the get_mcounts function,
which returns an array containing the y—values of the predicted data (i.e. an evaluation of the source model at

every point on the independent axis):

|sherpa> y = get_mcounts |
Next, we customize the plot by setting the appropriate fields in the ChIPS state object. We choose to connect the
data points with a simple, red line and remove the symbols marking individual datapoints:

sherpa> chips.curvestyle = _chips—>simpleline
sherpa> chips.curvecolor = _chips—>red
sherpa> chips.symbolstyle = _chips—>none

Finally, we plot the curve and redraw the plot window:

sherpa> () = curve(x.y)
sherpa> chips_redraw
As expected, the plot windofi@i now displays both the original data and the red best-fit line corresponding to

our linear source model.

10 Defining a Source Model and Fitting

Sherpa S-Lang Module — Sherpa

Expanding the Possibilities with a Script

Although the plotting techniques described in the above sections are effective, Sherpa provides much simpler
ways to create basic plots. For example, since the sherpa_eval function processes strings as if they were
entered at the Sherpa command line, the easiest way to plot the above fit is to_call the LPLOT command:

|sherpa> () = sherpa_eval("LPLOT FIT") |

However, the methods we have discussed enable us to perform more complicated tasks that are not possible w
the standard Sherpa command set. Herein lies the real value of the Sherpa S—-Lang module: It allows the user t
extend Sherpa's functionality as needed, without having to alter Sherpa itself.

The S—-Lang script_polyfit.sl provides a simple example of such an extension. Building on the methods used

in this section, it performs three fits to the example dataset (using polynomials of order 1, 2, and 3) and plots th
data and fits in a single pane, using a different color for each fit. The script uses two functions we have not yet
discussed:_chips_color_value, which takes a color name (e.g. "red") and returns the numeric value

associated with that color (in this case, 6), and chips_label, which draws a label on the plot window:

unix% more polyfit.sl

% Load ASCII data and errors
variable dat = readfile("datal.dat");
() = set_axes(dat.coll);

() = set_data(dat.col2);

() = set_errors(dat.col3);

% Plot data and errors
variable x = get_axes().mid;
variable y = get_data();
variable y_err = get_errors();
chips_clear();

() = curve(x,y,y_err);

% Create source model
() = create_model("polynom1d","model1");
() = set_source_expr("modell");

% Make future curves simple lines without markers
% for individual data points

chips.curvestyle = _chips—>simpleline;
chips.symbolstyle = _chips—>none;

% Create array containing names of colors for fit plots

variable colors = ["red", "green", "yellow"];

% Store initial polynomial order
variable i = 1;

% Run fits for orders 1, 2, and 3 polynomials, and
% plot each fit in a different color

loop (3) {
% Thaw coefficient for order i
() = set_thawed("modell.c" + string(i));

% Fit to order i polynomial
0 = run_fit();

% Plot fit results, using color specified by element

Expanding the Possibilities with a Script 11

Sherpa S-Lang Module — Sherpa

% i-1 of "colors" array

y = get_mcounts();

chips.curvecolor = chips_color_value(colors[i-1]);
() = curve(x,y);

% Add a label for this fit, in the same color as the fit

% curve

() = chips_label(1.0, (3.6 — 0.15%i), "Order " + string(i),
chips.curvecolor, 1.5);

% Use order i+1 polynomial in next iteration
i++;

}

% Draw the plot
chips_redraw();

You can run the script as follows (after starting a new session or issuing the command "ERASE ALL"):

sherpa> () = evalfile("polyfit.sI")
LVMQT: V2.0

LVMQT: initial statistic value = 2815.14

LVMQT: final statistic value = 151.827 at iteration 5
modell.cO 1.58227
modell.cl 0.198455

LVMQT: V2.0

LVMQT: initial statistic value = 151.827

LVMQT: final statistic value = 59.0027 at iteration 4
modell.cO 1.30826
modell.cl 0.347303
modell.c2 -0.0135317

LVMQT: V2.0
LVMQT: initial statistic value = 59.0027
LVMQT: final statistic value = 30.8491 at iteration 5
modell.cO 1.49843
modell.cl 0.1447
modell.c2 0.0322936
modell.c3 —0.00277729

The plot create@ shows the data, the three fit curves, and three labels whose colors match the corresponding
curves. Although this is a relatively simple application of the Sherpa module, it would not be possible using only
standard Sherpa commands.

A Note on sherpa_eval

The function_sherpa_eval, which is part of the Sherpa S—-Lang module, can be very useful in S-Lang scripts.

It takes a string as its argument and interprets the string as a Sherpa command entered at the Sherpa prompt. This
allows an application or script that imports the Sherpa module to execute any Sherpa command, regardless of
whether it has a S—Lang equivalent.

However, when a Sherpa command does have a S—Lang equivalent, it is almost always preferrable to use the
S-Lang version, rather than passing the command string to sherpa_eval. In addition to being more efficient,
Sherpa S-Lang functions generally provide S—Lang-scope output data (e.g. fit results) that are impossible to
obtain when using sherpa_eval.

12 A Note on sherpa_eval

Sherpa S-Lang Module — Sherpa

Also, note that sherpa_eval differs from the actual Sherpa command line in that one may execute only Sherpa
commands, not ChIPS commands or S-Lang statements. To execute a ChIPS command in a S—Lang script, us

chips_eval.

History

14 Jan 2005reviewed for CIAO 3.2: no changes
21 Dec 2005reviewed for CIAO 3.3: no changes
01 Dec 2006reviewed for CIAO 3.4: no changes

URL.:_http://cxc.harvard.edu/sherpa/threads/module_intro/ Last modified: 1 Dec 2006

History 13

http://cxc.harvard.edu/sherpa/threads/module_intro/

Sherpa S-Lang Module — Sherpa

Image 1: Plot of data retrieved by "get" functions

14 Image 1: Plot of data retrieved by "get" functions

Sherpa S-Lang Module — Sherpa

Image 2: Plot of data and fit retrieved by "get" functions

Image 2: Plot of data and fit retrieved by "get" functions

15

Sherpa S-Lang Module — Sherpa

Image 3: Plot created by "polyfit.s|"

16 Image 3: Plot created by "polyfit.sl"

