L1014-IRS A proto-brown-dwarf in a starless core?

Tyler Bourke
Submillimeter Array
Smithsonian Astrophysical Observatory

and the Spitzer c2d Legacy Team

Molecular Cloud Cores

• "starless cores" contain no embedded source L > 0.1L_{sun}(d/140pc) (IRAS)

(Myers et al. 1987; Beichman et al. 1986)

- "prestellar cores" mm/submm dust continuum emission peaks n ~ 10⁵ cm⁻³ (Ward-Thompson et al. 1994)
- protostellar cores a known protostar

"typical core" - 0.1 pc, a few M_{sun} , 10^4 - 10^5 cm⁻³, 10 K

Molecular Cloud Cores

- "Evolved prestellar cores" (prestellar+)
- evolved chemistry, eg CO depletion, centrally concentrated N₂H⁺/NH_{3,} deuterated species
 - infall asymmetry in multiple lines
 - larger N(H₂), line width, central density

(Lee et al. 2001; Tafalla et al. 2002; Caselli et al. 2002; Crapsi et al. 2004b; Bourke et al. 2005)

L1521F, an evolved prestellar core

- No IRAS, no 2MASS, no known outflow
- Has all the properties of an evolved prestellar core, best example after L1544 (Crapsi et al. 2004a, b)

Expectations with Spitzer

- new low luminosity sources near known protostars
- new low luminosity sources in "starless cores", most likely in prestellar and evolved prestellar cores
- proto Brown-dwarfs?
- very low mass protostars

L1014 – a "starless" core

- ordinary starless core, not "evolved"
- Mass ~2 M_{sun} from (sub)mm observations
- no obvious signs of star-formation in (sub)mm spectral line observations (infall, outflow)

Spitzer reveals a low luminosity source

D = 200 pc

- Model bb+disk+envelope
- L1014-IRS $L_{bol} \sim 0.09 L_{sun}$ M << 0.1 M_{sun}
- Disk-like component (MIPS) $M = 4x10^{-4}(R/50AU)^{0.5}$ $T(r) \sim r^{-0.5}$
- Bonnor-Ebert like envelope n ~ 1.5 x 10⁵ cm⁻³ L_{bol} ~ 0.3 L_{sun} ISRF sufficient M ~ 1.7 M_{sun}

If background then L \sim 16 L_{sun}(d/2.6kpc)

Near or Far?

two velocities, +4 (200 pc) and –40 km/s (2.6 kpc)

Evidence supports association with near cloud:

- No dense gas at –40 km/s, e.g., N₂H⁺ (Crapsi et al. 2005)
- Near infrared bipolar nebula (Huard et al. 2005)
- Compact CO outflow at –4 km/s (Bourke et al. 2005)
- Chance alignment unlikely

Scattered light nebula (Huard et al. 2005)

Outflow Parameters & Consequences

- Mass 1.4 x 10⁻⁵ M_{sun}
- Size 0.0026 pc, Age 700-7000 yrs (t_d 10t_d)
- Force 3-70 x 10⁻⁹ M_{sun} km/s yr⁻¹
- Assuming momentum conservation:

$$(dM/dt)_{acc} = F / (f \times V_w)$$
 with [f=0.1, V_w =200 km/s]

$$\Rightarrow$$
 (dM/dt)_{acc} ~ 2-35 x 10⁻⁹ M_{sun}/yr

Accretion rate very low, but larger than young BDs $(10^{-10} - 10^{-12} M_{sun}/yr; Muzerolle et al 2005)$

Like other protostars ...except for M_{env}

Force $3-70 \times 10^{-9} M_{sun} \text{ km/s yr}^{-1}$

Bontemps et al 1996

 $F_{co} (M_{\odot} km.s^{-1}/yr)$

Compilation of 391 outflows (Wu et al 2004 A&A 426 503)

L1014 is a weaker version of a typical outflow

Outflow not detected with 30-m (11" beam)

Is it substellar? - Mass estimates

 $(dM/dt)_{acc} \sim 10^{-8} M_{sun}/yr$

Low L_{bol} , Low $(dM/dt)_{acc} \rightarrow Low mass$

Age ~ 10^5 yr (~Class 0/I transition) \rightarrow ~0.001 M_{sun} if (dM/dt)_{acc} constant…likely larger in the past

cf. $0.09 L_{bol}$ @ $10^5 yr \rightarrow \sim 0.03 M_{sun}$ (Lyon98/00 tracks)

(Chabrier et al 2000; Baraffe et al 1998)

Proto-Brown Dwarf Candidate

L1148B - Another Spitzer Surprise

SED similar to that of L1014, but with less emission in mid-IR

L1014 and L1148B protostars did not form in prestellar cores like L1544

Not all differences among cores are due to evolution

(Kauffmann et al. in prep)

Summary

- L1014-IRS is a low L_{bol}, low M protostar (weak outflow)
 But is it substellar? (10-m class NIR spectrum)
- did not form from an evolved core (cf. L1544/L1521F)
- other low L_{bol} examples are emerging from c2d:
 - ⇒ L1148B similar to L1014 (fainter, no outflow yet)
 - ⇒ L1521F has a protostar, and scattered light neb.
- more examples in "ordinary" cores, not "evolved" cores
 - ⇒ need to fit these results into the low mass sf paradigm, or we need a paradigm shift; lowest mass sources form in different cores?

Spitzer probing brown dwarf formation

