# Results from the AEGIS-X survey of the Extended Groth Strip

#### Elise Laird

K Nandra (PI: Imperial), A Georgakakis (NOA), A Coil (Steward), C Pierce (UCSC), K Bundy (Toronto), J Aird (Imperial), and the AEGIS team





- AEGIS-X (Chandra AO-3 & AO-6): 1.6 Ms over 0.67 deg<sup>2</sup>
  - (Laird et al. 2009)
- Flux limits (on-axis, 1% complete):
  - SB (0.5-2 keV) 5.3 x 10<sup>-17</sup> cgs
  - HB (2-10 keV) 3.8 x10<sup>-16</sup> cgs
- Deep multiwavelength data over wide area (~0.5 -1.0 deg<sup>2</sup>) (Davis et al. 2007)
- Keck/DEIMOS DEEP2 spectroscopy: >10,000 z's with R<24.1, mainly at 0.6<z<1.4
- Optical: 76%, complete to  $R_{AB}$ =24.1
- IRAC 3.6μm: 94% (of sources with coverage) complete to  $m_{AB}$ =23.8
- ~35% spectroscopic completeness \ (with DEEP3  $\Rightarrow$  65%)

























## AGN and star formation rate evolution





AGN space density: Aird et al., submitted to MNRAS

SFRD: Hopkins & Beacom (2006)





# Color-magnitude relation for AGN



z=0.6-1.4; Nandra et al. 2007





# Stacked optical spectra of AEGIS-X sources







# Stacked optical spectra of AEGIS-X sources







# Stacked optical spectra of AEGIS-X sources



# **Host Galaxy Morphologies**



- 0.2<z<1.4
- L<sub>x</sub>>10<sup>42</sup> erg s<sup>-2</sup>
- 65% X-ray AGN E/S0/Sa galaxies (compared to 18% of DEEP2 galaxies)

 $M_{20}$ : central concentration  $\rightarrow$ 

G-M<sub>20</sub>: Abraham et al. 2003; Lotz et al. 2004

Pierce et al. 2007





## AGN/Galaxy cross-correlation function

#### Measure the clustering of non-quasar AGN at z=0.7-1.4



#### Coil et al. 2009

Also Miyaji et al. for X-ray AGN in ECDF-S & COSMOS

- AGN have ~same clustering amplitude as red, quiescent and green galaxies at z~1
- Significantly more clustered than blue, star forming galaxies
- No dependence on L<sub>x</sub>, M<sub>B</sub> or HR
- Evidence for galaxies hosting AGN being *more* clustered than matched galaxy sample (2.8σ)
- X-ray AGN hosts more likely to reside in groups and massive DM halos, than similar galaxies without an AGN
- Also more clustered than optically selected quasars





## AGN/Galaxy cross-correlation function

Measure the clustering of non-quasar AGN at z=0.7-1.4





Coil et al. 2007

If AGN/quasars are similar objects at different evolutionary stages, results consistent with quasar phase in blue cloud, then setting onto red sequence with lower luminosity X-ray AGN.





### AGN stellar mass function



- Stellar mass function ~flat over 0.4<z<1.4</li>
- AGN predominantly in massive hosts
- Luminosity function evolves rapidly over this redshift range but no evidence for AGN hosts "downsizing" in mass
  - ⇒ Accretion rate evolution?

Also Babic et al. 2007 for z<1 in CFD-S

Bundy et al. 2008





#### Conclusions

- Typical AGN at  $z\sim1$  are in massive, red host galaxies
- Stacked optical spectra of X-ray AGN suggest
  - Red sequence AGN host galaxies very similar to DEEP2 red sequence galaxies, but may have elevated star formation compared to DEEP2 galaxies
  - Green valley and blue cloud AGN have reduced star formation compared to DEEP2 galaxies
- AGN hosts are bulge dominated
- AGN are in dense environments
  - cluster like red and green hosts
  - Evidence that are more clustered than matched sample
  - ~42% are in groups





# New deep AEGIS-X Chandra data: AEGIS-X2

- A further 1.8 Ms observations complete as of end June 2009
- 3 x 600ks fields
- AO3+AO6+AO9 = largest *Chandra* survey program to date
- Complete data reduction underway. Each pointing composed of 17-29 (short) observations, with different roll angles
- Fields chosen to overlap with optimum part of AEGIS (ACS, CFHTLS, VLA, DEEP3 etc)
- Complete reduced dataset to be released early 2010



Nandra et al. in prep



