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Issues addressed in this work

1 What is the best diagnostic for determining a cool-core cluster?
2 How can the recent cool-core formation be ruled out?
3 What is the current census of the AGN fraction in cool-core

clusters?
4 Is there a quantitative correlation between the AGN output and

cool-core parameters?
5 How does AGN heating impact the LX−Tvir scaling relation on the

scale of clusters?
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The Cluster Sample: X-ray and Radio data

HIFLUGCS − The 64 brightest galaxy clusters

Based on the ROSAT All Sky Survey, |b| > 20◦.
fX(0.1− 2.4) keV & 2× 10−11 ergs/sec/cm2.
〈z〉 ∼ 0.05 ; zmax = 0.21
All have observations with Chandra observations.
All have radio observations. Measurements for our study taken
either from literature or archives.

65 % have data below 500 MHz
46 % have data below 80 MHz
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Recent cool-core formation hypothesis
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Cooling Flow Discrepancy (Hudson et al. 2009)

The spectral MDR (measured) an order of magnitude lower than the
classical MDR (predicted).

0.01 0.1 1 10 100 1000
0.01

0.1

1

10

100

Ṁ
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Test for the recent CC formation hypothesis

The test is based on the assumption that both high-z clusters and
low-clusters originate from the same underlying population of clusters.

1 Divide the sample into 4 redshift bins.
2 Forward-evolve the redshift bin 2, 3 and 4 clusters to the lowest

redshift bin.
3 Determine the mass-deposition rates of the forward-evolved

high-z clusters and compare them to the low-z clusters.
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Recent CC Formation?
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The probability of the two subsamples (the lowest- and highest-redshift
clusters) being drawn from the same distribution is less than 3%.
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The determining parameter for a CC cluster
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The defining parameter for a cool-core (Hudson et al. 2009)
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Central Cooling Time

Strong cool-core clusters → τ < 1 Gyr
Weak cool-core clusters → 1 Gyr < τ < 7.7 Gyr
Strong cool-core clusters → τ > 7.7 Gyr
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Strong Cool-Core clusters

NGC 507 A 262 A 3112 NGC 1399 2A 0335A 85

A 133

A 478 NGC 1550 EXO 0422 A 496 A 780 MKW 4 NGC 4636

A 3526
A 1644 A 5044 A 1795 A 3581 RXJ 1504 A 2029

A 2052 MKW3S

A 2199

A 2204 A 4059A 2597S 1101
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Non-Cool-Core clusters

A 3376A 119 A 400 A 399
A 401

A 3158

A 3391 A 3395s A 1367A 754 ZwCl 1215 A 1656

A 1736 MKW 8 A 2147 A 2163 A 2256 A 2255
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ICM cooling and AGN heating interrelation
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Spectra of CCRSs in the HIFLUGCS sample

→ 49 of 64 GCs have a central radio source
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(Mittal et al. 2009, also see Birzan arXiv:0806.1929)
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A few well-known radio galaxies in the sample...
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SCC, WCC and NCC fractions: With and without a CRS (Mittal et al. 2009)
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The probability of finding a
CRS is a strong function of
the cooling time.

All SCC clusters (with
τ < 1 Gyr) have a radio
active AGN at their center!
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Press Release based on the article "AGN heating and ICM cooling in the HIFLUGCS

sample of galaxy clusters", by R. Mittal et al., A & A, 2009, vol. 501-3, p. 835
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X-ray − Radio correlation
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LX−Tvir scaling relation
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Effect of AGN heating on the L− T relation

Sijacki et al. (2006) Puchwein et al. (2008)

Croston et al. (2006)

• With a central radio source
+ Without a central radio source
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L− T relation in HIFLUGCS
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Scatter in the L− T relation

LX

1044 h−2
71 erg/s

= α ×
(

Tvir
4 keV

)β

Category # α β σint, LX (in %) σint, Tvir (in %)
ALL 64 2.62±0.20 2.90±0.16 45.6 15.6

NSCC 36 2.21±0.17 2.62±0.20 48.1 18.3

SCC 28 3.82±0.38 3.33±0.15 51.7 16.0

WCC 18 2.30±0.20 3.25±0.32 34.7 10.7

NCC 18 2.12±0.26 2.31±0.18 49.4 21.4

After subtracting the core (5% of R500), the total scatter go down to 42.2%
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Conclusions

1 Cooling-flow discrepancy can only be explained by invoking a heating
mechanism.

2 The probability for the BCG to harbor an active AGN increases with decreasing
cooling time. All SCCs have a central radio source.

3 The radio luminosity is a good indicator of cooling activity.

4 Cooling dominates the LX−Tvir relation on cluster scale. No evidence for the
scatter in LX−Tvir being solely due to cooling.
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