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Issues addressed in this work

® What is the best diagnostic for determining a cool-core cluster?
® How can th® recent cool-core formation be ruled out?

®) What is the current census of the AGN fraction in cool-core
clusters?

®) Is there a quantitative correlation between the AGN output and
cool-core parameters?

® How does AGN heating impact the Lx— Ty, scaling relation on the
scale of clusters?
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The Cluster Sample: X-ray and Radio data

HIFLUGCS — The 64 brightest galaxy clusters

@ Based on the ROSAT All Sky Survey, |b| > 20°.

@ fx(0.1 —2.4) keV > 2 x 10~ " ergs/sec/cm?.

@ (Z) ~0.05; zp,x = 0.21

@ All have observations with Chandra observations.

@ All have radio observations. Measurements for our study taken
either from literature or archives.

@ 65 % have data below 500 MHz
@ 46 % have data below 80 MHz
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Recent cool-core formation hypothesis
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Cooling Flow Discrepancy (Hudson et al. 2009)

The spectral MDR (measured) an order of magnitude lower than the
classical MDR (predicted).
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Test for the recent CC formation hypothesis

"

The test is based on the assumption that both high-z clusters and

low-clusters originate from the same underlying population of clusters.

&) Divide the sample into 4 redshift bins.

®) Forward-evolve the redshift bin 2, 3 and 4 clusters to the lowest
redshift bin. .

® Determine the mass-deposition rates of the forward-evolved
high-z clusters and compare them to the low-z clustels.
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]
Recent CC Formation?
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]
Recent CC Formation?
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The probability of the two subsamples (the lowest- and highest-redshift
clusters) being drawn from the same distribution is less than 3%. J
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The determining parameter for a CC cluster
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|
The defining parameter for a cool-core (Hudson et al. 2009)
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-
Central Cooling Time

@ Strong cool-core clusters — 7 < 1 Gyr
@ Weak cool-core clusters — 1 Gyr < 7 < 7.7 Gyr

@ Strong cool-core clusters — 7 > 7.7 Gyr
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Strong Cool-Core clusters
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Strong Cool-Core clusters
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ICM cooling and AGN heating interrelation
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Spectra of CCRSs in the HIFLUGCS sample

— 49 of 64 GCs have a central radio source
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(Mittal et al. 2009, also see Birzan arXiv:0806.1929)
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A few well-known radio galaxies in the sample...
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SCC, WCC and NCC fractions: With and without a CRS (Mittal et al. 2009)
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|
SCC, WCC and NCC fractions: With and without a CRS (Mittal et al. 2009)

35
30 B
44 %
25 B
The probability of finding a
20 CRS is a strong function of

28 % 28 %

the cooling time.

o All SCC clusters (with

7 < 1 Gyr) have a radio
active AGN at their center!
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Press Release based on the article "AGN heating and ICM cooling in the HIFLUGCS

sample of galaxy clusters", by R. Mittal et al., A & A, 2009, vol. 501-3, p. 835

National Radio Astronomy Observatory.

Radio astronomy reveals
the hidden universe.
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X-ray — Radio correlation
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Lx—T,; scaling relation
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Effect of AGN heating on the L — T relation
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e With a central radio source
+ Without a central radio source
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L — T relation in HIFLUGCS
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Scatter in the L — T relation

Lx

1044 h;‘Z erg/s

| Category | # | a 3 | Gin, Ly (iN %) [ oine, 1, (iN %) |
ALL 64 | 2.62+0.20 | 2.90+0.16 45.6 15.6
NSCC 36 | 2.21+0.17 | 2.62+0.20 48.1 18.3
SCC 28 | 3.82+0.38 | 3.33+0.15 51.7 16.0
WCC 18 | 2.30+0.20 | 3.25+0.32 34.7 10.7
NCC 18 | 2.12+0.26 | 2.31+0.18 49.4 21.4
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]
Scatter in the L — T relation

[-X 7-vir
= X
1044 h;‘Z erg/s o (4 keV)

| Category | # | a \ 3 | Gin, Ly (iN %) [ oine, 1, (iN %) |
ALL 64 | 2.62+0.20 | 2.90+0.16 45.6 15.6
NSCC 36 | 2.21+0.17 | 2.62+0.20 48.1 18.3
SCC 28 | 3.82+0.38 | 3.33+0.15 51.7 16.0
WCC 18 | 2.30+0.20 | 3.25+0.32 34.7 10.7
NCC 18 | 2.12+0.26 | 2.31+0.18 49.4 21.4

After subtracting the core (5% of Rs), the total scatter go down to 42.2% J
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.
Conclusions

@ Cooling-flow discrepancy can only be explained by invoking a heating
mechanism.

@ The probability for the BCG to harbor an active AGN increases with decreasing
cooling time. All SCCs have a central radio source.

© The radio luminosity is a good indicator of cooling activity.

@ Cooling dominates the Lx— T.; relation on cluster scale. No evidence for the
scatter in Lx— T.ir being solely due to cooling.
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