X-ray properties of SZ selected clusters from the South Pole Telescope

The SZ effect with SPT

- 10m telescope at the South Pole
- Dry, high alt (2800m)
- Observes the CMB at 100, 150 and 220 GHz
- Spatial resolution ~1 arcmin

SPT survey

 First clusters detected from an SZ survey, presented in Vandelinde et al. 2010, 21 clusters ~180 deg²

- First cosmological constraints presented
- SPT will cover ~2500 deg² by Nov 2011
- Goal to constrain cosmological pars through measurement of cluster mass function
- 15 clusters with X-ray data from ~180 deg2

Optical follow-up

- End of 2010, 1500 deg² observed, ~240 clusters with optical confirmation
- Increased focal plane sensitivity, telescope efficiency
- ~95% purity at S/N > 5

Observed	Candidates >5σ	Followed up >5σ
2008	22	19
2009	98	98
2010	172	122
2011	more	
So far	292	239

Expect 440 clusters at this threshold

- Several stage optical confirmation
- DSS
- SWOPE (0.9m)
- Blanco MOSAIC (4m)
- Magellan (6.5m)
- Spitzer (z>0.6)

SPT cluster sample

Average redshift z~0.55

Most massive cluster at z>1

May 25, 2011

Mass Calibration

- First cosmological constraints are limited by ~25% mass calibration
- Need precise, unbiased masses
 - X-ray: Chandra and XMM
 - WL: Magellan and HST
 - Dynamical masses: Gemini and VLT

Mass Calibration

- First cosmological constraints are limited by ~25% mass calibration
- Need precise, unbiased masses
 - X-ray: Chandra and XMM
 - Have ~45 approved cluster obs total
 - WL: Magellan and HST
 - Dynamical masses: Gemini and VLT

Y_x, mass proxy

- $Y_x = M_{gas}T_x$
- X-ray mass proxy Y_x has <u>low scatter</u>
- Simulations find < 8%
- Confirmed by observations
- X-ray ~equiv of Y_{sz}

1st SPT X-ray follow-up program

- 15 highest S/N clusters from 2008 catalog (Vanderlinde et al. 2010)
- Obtain 1500 source cts for ~15% kT
- Estimate cluster mass via X-ray calibrated Y_{x} - M_{500} relation
- Observation with both Chandra and XMM
- Results \rightarrow Andersson et al. 2010, arXiv 1006.3068
- X-ray follow-up for z~0.7 clusters is very expensive →
 Thanks to lots of Chandra GTO data + GO programs

First X-ray study of SZ selected sample

2341-5119, z=0.9983

Andersson et al. 2010

- SPT-CL J0533-5005, z=0.8810

SPT-CL J0546-5345, z=1.0665

7=1.08

- SPT-CL 12342-5411 z=1.0

$Y_{sz} - Y_x$ relation

- Slope consistent with expected =1
- Normalization implies 0 Y_{s7}=0.82+-0.07 Y_x
- Expected Y_{sz}/Y_x ratios 0 from different gas models Arnaud+09 0.924 Vikhlinin+06 ~0.91

Measuring T_{ma}/T_{x}

SPT + X-ray follow-up cosmological constraints

Developing a full MCMC to jointly fit scaling relations and cosmology

- *w* constraints improved by ~30%
- σ_{s} by ~50%
- Constraints based on just 21 clusters with 15 having (limited) X-ray follow-up
- Full SPT survey will have
 ~450 clusters
- Separate XMM proposals to constrain low-z and high-z mass-observable norm.

Benson et al. in prep

Summary

- First X-ray follow-up of SZ selected sample
- X-ray mass calibration gives mass-SZ scaling consistent with expected relations
- Improves cosmological constraints of SPT
- SZ and X-ray integrated pressure agree well
- Multi-wavelength observations crucial for mass calibration to improve cosmological constraints

Mass function evolution

Projected constraints

With 5% mass cal, 10% on evolution z=0-1

+- 4.6% on w

LCDM has a problem?

Cluster modeling $\rightarrow Y_{\chi}$

- Data depth allows for ~1 kT measurement
 - No hydrostatic masses
- Model gas density using surface brightness in 0.7-2. keV band
 - Low kT dependence
- Can fit variety of cluster morphologies

$$n_{e}n_{p} = n_{0}^{2} \frac{(r/r_{c})^{-\alpha}}{(1+r^{2}/r_{c}^{2})^{3\beta-\alpha/2}} \frac{1}{(1+r^{\gamma}/r_{s}^{\gamma})^{e/\gamma}}$$

Vikhlinin et al. 2006

all Anuelsson - AAS 210 Duston

Spherical Y_{sz} via deprojection

- Vanderlinde et al. 2010, analysis extended
- Spatially filter SPT maps using information from X-ray gas density profile + "universal" temperature profile (also Arnaud+09 pressure)

$$T(r) = T_0 \frac{(x/0.045)^{1.9} + 0.45}{(x/0.045)^{1.9} + 1} \frac{1}{(1 + (x/0.6)^2)^{0.45}}$$

Vikhlinin et al. 2006

• De-project Y_{s_7} using these same profiles

SZ selection effect

- SZ selection impacts scaling relations
- Selection is applied by truncating probability of Ysz given M and renormalizing
- Here, the \xi=5.5 cut is modeled as an errorfunction in Ysz

$$P_{sel}(\ln Y_{SZ}) = \frac{1}{2} \left(1 + erf\left(\frac{\ln Y_{SZ} - \ln Y_{SZ,\xi-cut}}{\sqrt{2\sigma_{\ln Y_{SZ}-\ln\xi}^2}}\right) \right)$$

SZ selection effect

1000 mock clusters drawn from a mass function

