Signatures of Jet Impact on the ISM in Radio Galaxy 4C+29.30

Aneta Siemiginowska (CfA), Małgorzata Sobolewska (CAMK), Łukasz Stawarz (JAXA), Tom Aldcroft (CfA), Doug Burke (CfA), Teddy Cheung (NRL), Dan Evans (NSF), Joanna Holt (Leiden), Marek Jamrozy (Jagiellonian University), Giulia Migliori (CfA)

ABSTRACT: We present results of a deep Chandra observation of a low-z radio galaxy with signs of the complex interactions between the radio plasma and ISM. The Chandra image shows regions of enhanced X-ray emission correlated with radio structures along the jet axis. The larger scale X-ray diffuse emission outside the radio source correlates with the morphology of known optical line-emitting regions. We measure the temperature of the ISM and identify regions heated by weak shocks with the Mach number of 1.6. The X-ray emitting gas is most likely heated by the radio source expanding within this galaxy. The multi-band data supply a complex view of the source, signaling feedback processes closely associated with the central active nucleus.

Radio Galaxy

The soft 0.5-2 keV X-ray emission spreads over the entire radio source with several emission regions: Central diffuse emission, Southern jet, Hot Spot and some diffuse emission related to the Southern Lobe. To the North the strong diffuse X-rays correspond to the Northern Radio Lobe and Hot Spot.

The Southern Hot Spot is the brightest X-ray emitting region. It is in radio/hard X-ray emission and very soft X-ray band, <0.25% of the total luminosity of this HS is equal to \(L_x(0.5-2\text{keV}) \approx 5.0\times10^{43}\text{ergs/s} \).

There is a strong morphological correspondence between the main radio source components and the detected X-ray emission features suggesting that the radio source heats up the gas and dissipate the initial jet energy.

• Radio features occur in pairs;
• X-ray peaks show as single features;
• The Southern Hot Spot is the brightest feature in radio and X-rays.
• Radio and X-rays peaks are offsets in secondary features, while the strongest emission sites are aligned.

Summary and Conclusions

References

Acknowledgments

This research is funded in part by NASA contract NAS8-30073 and through Chandra Award GOO-11133X and XMM-Newton Award NNX08AS35G. The National Radio Astronomy Observatory is operated by Associated Universities, Inc. under a cooperative agreement with the National Science Foundation.

X-ray Properties

The soft 0.5-2 keV X-ray emission spreads over the entire radio source with several emission regions: Central diffuse emission, Southern jet, Hot Spot and some diffuse emission related to the Southern Lobe. To the North the strong diffuse X-rays correspond to the Northern Radio Lobe and Hot Spot.

The Southern Hot Spot is the brightest X-ray emitting region. It is in radio/hard X-ray emission and very soft X-ray band, <0.25% of the total luminosity of this HS is equal to \(L_x(0.5-2\text{keV}) \approx 5.0\times10^{43}\text{ergs/s} \).

There is a strong morphological correspondence between the main radio source components and the detected X-ray emission features suggesting that the radio source heats up the gas and dissipate the initial jet energy.

• Radio features occur in pairs;
• X-ray peaks show as single features;
• The Southern Hot Spot is the brightest feature in radio and X-rays.
• Radio and X-rays peaks are offsets in secondary features, while the strongest emission sites are aligned.

Summary and Conclusions

References

Acknowledgments

This research is funded in part by NASA contract NAS8-30073 and through Chandra Award GOO-11133X and XMM-Newton Award NNX08AS35G. The National Radio Astronomy Observatory is operated by Associated Universities, Inc. under a cooperative agreement with the National Science Foundation.