
Sherpa
On the Move to Open, Collaborative Development

O. Laurino, A. Siemiginowska, J. Evans, T. Aldcroft, D. J. Burke, J. McDowell, W. McLaughlin, D. Nguyen
olaurino@cfa.harvard.edu

Support for the development of Sherpa is provided by the National Aeronautic and Space Administration through the
Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA
under contract NAS8-03060.

Sherpa is the Chandra Interactive Analysis of Observations
(CIAO) modeling and fitting application. Written in Python, with
efficient C, C++, and Fortran extensions, Sherpa enables the
user to construct complex models from simple definitions and
fit those models to data, using a variety of statistics and
optimization methods.
!
Sherpa is a general-purpose fitting engine with advanced
capabilities, and has been used as a backend for the
development of new applications like Iris, the Virtual
Astronomical Observatory spectral energy distribution builder
and analyzer. However, building and installing Sherpa as a
standalone Python package was problematic, and such a build
would not maintain all of the Sherpa capabilities.
!
For version 4.7 Sherpa’s build scripts have been completely
rewritten, standardized, and made independent of CIAO, so
that Sherpa can now be built as a fully functional standalone
Python package, and yet allow users the flexibility they need
in order to build Sherpa in customized environments.
!
Customized source build options example:

• Link Sherpa’s Python extensions against local libraries,
e.g. FFTW

• Enable XSPEC extension for X-Ray specific models
(HEASARC)

This work is part of a larger framework that includes migrating the
whole Sherpa codebase to GitHub, so that the wider astronomical
community can be engaged in its development, as well as providing
developers with a clean software framework for extending Sherpa.

Sherpa is available in source and binary form and can
be easily installed with:
1. setuptools, using the source distribution
2. pip, as Sherpa is registered in PyPI
3. conda, from an Anaconda installation
4. standalone installer
!
The figure on the left shows the output of the
standalone installer.
!
Beta Binaries can be downloaded from:
http://cxc.cfa.harvard.edu/contrib/sherpa47b
(or scan the QR Code on the right).
!
Production-ready binaries and full documentation for
the source builds will be released with CIAO 4.7 in
December 2014.

Sherpa can be seamlessly integrated with other
Python tools and packages.
!
In the example on the right, Sherpa is used
alongside Astropy to perform a simple fit in an
IPython Notebook.
!
Note how Sherpa’s plot_fit() function can be used
to produce an inline matplotlib plot.
!
Sherpa supports PyFITS and Matplotlib as FITS
and plotting backends, as well as Crates and
ChIPS, which are the native CIAO packages for
FITS I/O and plotting.

1. python setup.py install

2. pip install [--pre] sherpa

3. conda install sherpa

4. bash sherpa-…-installer.sh

The CXC channel currently needs to be added with
$ conda config --add https://conda.binstar.org/cxc

Sherpa enables you to:
• fit 1-D data sets (simultaneously or individually),

including: spectra, surface brightness profiles, light
curves, general ASCII arrays;

• fit 2-D images/surfaces in the Poisson/Gaussian
regime;

• access the internal data arrays;
• build complex model expressions;
• import and use your own models;
• choose appropriate statistics for modeling Poisson or

Gaussian data;
• import new statistics, with priors if required by analysis;
• visualize a parameter space with simulations or using

1-D/2-D cuts of the parameter space;
• calculate confidence levels on the best-fit model

parameters;
• choose a robust optimization method for the fit:

Levenberg-Marquardt, Nelder-Mead Simplex or Monte
Carlo/Differential Evolution;

• perform Bayesian analysis with Poisson Likelihood and
priors, using Metropolis or Metropolis-Hastings
algorithm in the MCMC (Markov-Chain Monte Carlo);

• use Python to create complex analysis and modeling
functions, build the batch mode analysis or extend the
provided functionality to meet the required needs.

Read SED from VOTable using Astropy

Get and sort arrays for frequency, flux
density, and errors

Convert units to wavelength
and flux with Astropy

Load preprocessed arrays into Sherpa

Fit data with a brokenpowerlaw

Best Fit Model

Plot data and model using matplotlib

Compute 90% confidence intervals

Plot 68% and 90% confidence regions

The “pre” switch is required as Sherpa is currently tagged as a pre-release on PyPI

