A Multiwavelength View of the HST Frontier Cluster MACS J0416.1-2403

Georgiana Ogrean
Hubble Fellow
Harvard-Smithsonian Center for Astrophysics
Cambridge, MA

Christine Jones, Reinout van Weeren, William Forman, Felipe Santos (CfA), Stephen Murray (JHU)
Hubble’s Bucket List

Frontier Fields
PUSHING THE LIMITS OF THE HUBBLE SPACE TELESCOPE
Hubble’s Bucket List

Frontier Fields
PUSHING THE LIMITS OF THE HUBBLE SPACE TELESCOPE

MACSJ0717 MACSJ1149 MACSJ0416 Abell 2744
AGN Radio Relic Radio Halo
Hubble’s Bucket List

Frontier Fields
PUSHING THE LIMITS OF THE HUBBLE SPACE TELESCOPE

MACSJ0717
MACSJ1149
MACSJ0416
Abell 2744

AGN
Radio Relic
Radio Halo
Total mass within a radius of 950 kpc:

\[\sim 1 \times 10^{15} M_{\odot} \]

- S1
 - \(M \sim 4 \times 10^{13} M_{\odot} \)
- S2
 - \(M \sim 1 \times 10^{13} M_{\odot} \)

\(\approx 200 \text{ kpc} \)

Jauzac et al. (2014)
SCENARIO 1

A pre-merger system:
C2 approaches C1 for the first time.

SCENARIO 2

A post-merger system:
C2 approaches C1 for the second time.

Jauzac et al. (2014)
0.5 - 3 keV Chandra surface brightness map, based on 180 ks of data (PIs: Murray, Jones).
$z = 0.40$
$T = 9.6 - 10.3$ keV

$0.5 - 3$ keV Chandra surface brightness map, based on 180 ks of data (PIs: Murray, Jones).
Is C1 a cool core?
0.5 - 3 keV Chandra surface brightness map, based on 180 ks of data (PIs: Murray, Jones).
Peaked central brightness BUT...

High ellipticity

600 kpc
Peaked central brightness BUT...

- High ellipticity
- Deviations from symmetry

600 kpc
Peaked central brightness BUT...

- High ellipticity
- Deviations from symmetry
- Hot, high-entropy core

$T \approx 13 \text{ keV}$
$n \approx 5 \times 10^{-3} \text{ cm}^{-3}$

Sanderson et al. (2009)
Peaked central brightness BUT...

- High ellipticity
- Deviations from symmetry
- Hot, high-entropy core

600 kpc
Peaked central brightness BUT...

- High ellipticity
- Deviations from symmetry
- Hot, high-entropy core

\[\chi \]

\[\text{DOUBLE } \beta\text{-model} \]
Peaked central brightness BUT...

- High ellipticity
- Deviations from symmetry
- Hot, high-entropy core
- Evidence of a 2nd subcluster

DOUBLE β-model
The ratio:
\[R_S = \frac{S_{0,1}}{S_{0,2}} \]
is closest to 1 in the direction of the "hidden" subcluster.
C1 is undergoing a merger with a less massive cluster not immediately visible in the X-ray map.
Is C2 a relaxed cluster?
\[\beta = 0.6 \text{ (fixed)} \]

\[r_c = 150 \pm 5 \text{ kpc} \]
$\beta = 0.6$ (fixed)

$r_c = 150 \pm 5$ kpc
$\beta = 0.6$ (fixed)

$r_c = 150 \pm 5$ kpc
$\beta = 0.6$ (fixed)

$r_c = 150 \pm 5$ kpc
\[\beta = 1.6 \pm 0.3 \text{ (free)} \]

\[r_c = 460 \pm 70 \text{ kpc} \]
\[\beta = 1.6 \pm 0.3 \text{ (free)} \]
\[r_c = 460 \pm 70 \text{ kpc} \]
\(\beta = 1.6 \pm 0.3 \text{ (free)} \)
\(r_c = 460 \pm 70 \text{ kpc} \)
C2 is also undergoing a merger with a smaller cluster not immediately visible in the X-ray map.
Provisional Summary

C1 is merging
- strongly elongated
- hot core
- high central entropy
- ICM substructure
- C1 = multiple subclusters

C2 is merging
- flat X-ray brightness
- poor/unphysical β-model fit
- density discontinuity in the ICM
Are C1 and C2 interacting with each other?
- no clear evidence of typical merger shocks
no clear evidence of typical merger shocks

no evidence of diffuse radio emission like, e.g., in the Bullet Cluster or A3667
- No clear evidence of typical merger shocks
- No evidence of diffuse radio emission like, e.g., in the Bullet Cluster or A3667
- No large dissociation between the DM and the gas components (Jauzac et al. 2014)
• no clear evidence of typical merger shocks
• no evidence of diffuse radio emission like, e.g., in the Bullet Cluster or A3667
• no large dissociation between the DM and the gas components (Jauzac et al. 2014)

C1 and C2 have not yet merged with each other
Summary

• The HST Frontier cluster MACS J0416.1-2403 is a hot (T ~ 10 keV), massive (M ~ 1e15 M\textsubscript{\odot}) merging cluster.

• The main subclusters are interacting with less massive galaxy groups, as evidenced by substructure and weak density discontinuities in the ICM.

• However, no clear evidence of interaction between the two main subclusters.

• **Likely scenario:** MACS J0416.1-2403 is a place of active cosmic structure growth. We are witnessing a pre-merging system.
Fig. 2: Zoom-in on the N cluster core. A “cavity”-like feature is seen NW of the core.
Calculate the local sky background surface brightness from the outer bins of the profile.

Keeping the sky background fixed to its best-fitting value, fit the inner part of the profile.

Subtract the stowed background profile from the surface brightness profile across the "cavity".

Bin the net profile to have at least 1 count/bin.

Use Cash statistics for the fits, rather than chi-squared statistics.

Fit various underlying density models to the data, assuming that the plasma is isothermal.

Fig. 2: Zoom-in on the N cluster core. A "cavity"-like feature is seen NW of the core.
Calculate the local sky background surface brightness from the outer bins of the profile.

Keeping the sky background fixed to its best-fitting value, fit the inner part of the profile.

\[\chi^2\]

Fig. 2: Zoom-in on the N cluster core. A “cavity”-like feature is seen NW of the core.

\[\beta\text{-model}\]

\[\text{double } \beta\text{-model}\]

\[c = 99.999\%\]

[Graphs showing surface brightness profiles and fits with chi-squared values and parameters.]
Fig. 2: Zoom-in on the N cluster core. A “cavity”-like feature is seen NW of the core.
Fig. 2: Zoom-in on the N cluster core. A “cavity”-like feature is seen NW of the core.
Spectroscopic Analysis

From the total spectrum of a partial annulus, subtract the stowed background spectrum from the same region.

Bin the spectra to have at least 1 count/bin.

Use Cash statistics for the fits, rather than chi-squared statistics.

Keeping the sky background model fixed, fit the net source spectra with single-temperature APEC models.

Fig. 2: Zoom-in on the N cluster core. A “cavity”-like feature is seen NW of the core.
Model the local sky background.

Spectroscopic Analysis

From the total spectrum of a partial annulus, subtract the stowed background spectrum from the same region.

Bin the spectra to have at least 1 count/bin.

Use Cash statistics for the fits, rather than chi-squared statistics.

Keeping the sky background model fixed, fit the net source spectra with single-temperature APEC models.

Fig. 2: Zoom-in on the N cluster core. A “cavity”-like feature is seen NW of the core.

Fig. 3: Temperature profile across the NW “cavity.”

1 arcsec = 5.340 kpc

46