Analysis of the ACIS Particle Background and Generation of Model Spectra

Chandra ACIS particle background

- Cosmic-ray particles are a significant contributor to the X-ray background.
- No public tool exists to estimate the paricle-induced background lacksquarefor Chandra.
- Previous work (Bartalucci et al. 2014) studied average spectral shape and spatial variation for ACIS-I chips in VFAINT mode.
- We aim to understand the time and spatial variation of the ACIS-I & S background in VFAINT & FAINT mode in order to provide spectral models. **Data reduction**
- Used "ACIS stowed" and blank-sky observations (Table 1).

Hiromasa Suzuki (The University of Tokyo),

Paul P. Plucinsky, Terrance Gaetz (Harvard-Smithsonian Center for Astrophysics), and Aya Bamba (The University of Tokyo)

Stowed		Blank-sky	Blank-sky (continued)	
OBSID I DATE I EXPOSURE (ks)		OBSID DATE EXPOSURE (ks)	OBSID I DATÈ I EXPOSURE (ks)	
62664 2016-12-08 9.11 62665 2016-11-03 9.10 62666 2016-10-14 9.00 62667 2016-09-26 10.64 62668 2015-12-09 47.38 62678 2012-06-15 47.38 62802 2011-11-09 50.56 62804 2011-07-12 47.45 62809 2010-03-06 45.60 62810 2009-11-04 49.86 62811 2009-06-19 12.38 62812 2009-06-18 33.15 62813 2008-11-03 49.02 62814 2008-07-26 48.72 62815 2007-05-28 46.28 62819 2006-11-18 47.29 62823 2006-06-01 44.11 62824 2005-11-13 47.17 62831 2005-06-10 47.20 62836 2004-11-04 46.62 62846 2003-12-08 45.86 62848 2003-05-04 47.46 62850 2003-05-04 47.46 62848 2003-05-04 47.46 62850 2003-05-04 47.46\\ 62850		12043 2010-03-18 129.58 $12044 2010-03-23 99.53$ $12045 2010-03-28 99.72$ $12046 2010-04-08 78.02$ $12047 2010-04-12 10.14$ $12048 2010-05-23 138.10$ $12049 2010-05-28 86.94$ $12050 2010-06-03 29.66$ $12051 2010-06-10 57.29$ $12052 2010-06-15 110.41$ $12053 2010-07-05 68.11$ $12054 2010-07-09 61.00$ $12055 2010-05-15 80.68$ $12123 2010-03-21 24.79$ $12128 2010-03-27 22.80$ $12129 2010-04-08 77.14$ $12135 2010-04-16 92.78$ $12138 2010-04-18 38.53$ $12213 2010-05-17 61.29$ $12218 2010-06-11 87.98$ $12219 2010-06-06 33.66$ $12220 2010-06-18 48.13$	12223 2010-06-13 100.71 12227 2010-07-14 54.32 12230 2010-07-11 33.81 12231 2010-07-12 24.72 12232 2010-07-18 32.89 12233 2010-07-16 35.57 12234 2010-07-22 49.15 8591 2007-09-20 45.43 8592 2007-10-22 86.64 8593 2007-10-06 49.49 8594 2007-10-06 49.49 8594 2007-10-19 115.42 8596 2007-10-19 115.42 8596 2007-10-24 115.12 8597 2007-10-27 108.69 9578 2007-10-30 38.57 9593 2007-09-22 46.43 9596 2007-11-04 111.89 9718 2007-10-03 49.38	
02000 1 2002 00 00 1 02.40				

- Data range from 2002 to 2016 with total exposure of ~940 ks (stowed), and from 2007 to 2010 with total exposure of ~2930 ks (blank-sky).
- Obtained "merged data" for both the stowed and blank-sky observations \bullet by taking sum over all the observations.

<u>Modeling the background spectra</u>

- Spectral model includes:
 - AI, Si, Ni and Au fluorescence lines as zero-width Gaussians (Table 2).
 - "frame store lines" (produced by inappropriate correction of CTI for events that convert in the frame store region) as broad Gaussians with flat top.
 - continuum as powerlaw, broken powerlaw, exponential and broad Gaussians.
- Spatial variation:
 - used the merged data.
 - flux and spectral shape (mainly frame store lines and continua (< ~1 keV)) vary along CHIPY axis.
 - each chip divided into 32 regions along CHIPY, and modeled (Figure 1).
- Time variation:
 - used the individual stowed spectra extracted from the whole chip regions.

Table 1: Observation logs.

		Origi	n	Line centroid ((keV)
		AI	Κα	1.48656	+frame store line
			Kβ	1.55745	+frame store line
		Si	Κα	1.73978	
		Au	Μα2	2.11800	+frame store line
			Μα1	2.12290	+frame store line
			Mβ	2.20500	+frame store line
			Μγ	2.41000	+frame store line
		Ni	Κα1	7.46090	
			Κα2	7.47820	
			Kβ1,3	8.26470	
		Au	L1	8.49390	+frame store line
			Lα1	9.71330	+frame store line
╘╧			Lα2	9.62800	+frame store line
エ			Lβ2	11.5847	+frame store line
			Lβ1	11.4423	+frame store line
5.	32 regions	Table : in our	2: Lir study	ne emis y.	sions included
5.	32 regions CHIPY CHIPY=(1	Table 2 in our -32)	2: Lir study	ne emis y. c	HIPY=(993-1024)
keV ⁻¹) . C	32 regions CHIPY CHIPY=(1 5×10 ⁻³ stowed blank	Table 2 in our -32) -sky	2: Lir study	ne emis y. c	HIPY=(993–1024) frame store lines
s ⁻¹ keV ⁻¹)	32 regions CHIPY CHIPY=(1 5×10 ⁻³ Stowed blank	Table 2 in our -32) -sky	0.01 5×10-3	ne emis y. c	HIPY=(993–1024) frame store lines
te (s ⁻¹ keV ⁻¹)	32 regions CHIPY CHIPY=(1 5×10 ⁻³ 2×10 ⁻³	Table 2 in our -32) -sky	0.01 5×10-3 2×10-3		SSIONS INCLUDED HIPY=(993–1024) frame store lines
rate (s ⁻¹ keV ⁻¹)	32 regions CHIPY CHIPY=(1 5×10 ⁻³ 2×10 ⁻³	Table 32) -32) -sky	0.01 5×10 ⁻³ 2×10 ⁻³ 10 ⁻³		SSIONS INCLUDED HIPY=(993–1024) frame store lines
unt rate (s ⁻¹ keV ⁻¹)	32 regions CHIPY CHIPY=(1 0.01 5×10 ⁻³ 2×10 ⁻³ 5×10 ⁻⁴	Table 32) -32) -sky	0.01 5×10 ⁻³ 2×10 ⁻³ 10 ⁻³ 5×10 ⁻⁴		SSIONS INCLUDED HIPY=(993–1024) frame store lines
Count rate (s ⁻¹ keV ⁻¹)	32 regions CHIPY CHIPY=(1 5×10 ⁻³ 2×10 ⁻³ 5×10 ⁻⁴	Table 3 in our -32) -sky +	0.01 5×10 ⁻³ 2×10 ⁻³ 10 ⁻³ 5×10 ⁻⁴		SSIONS INCLUDED HIPY=(993–1024) frame store lines
Count rate (s ⁻¹ keV ⁻¹)	32 regions CHIPY CHIPY=(1 0.01 5×10 ⁻³ 0 ⁻³ 5×10 ⁻⁴ 2×10 ⁻⁴	Table in our	0.01 5×10 ⁻³ 2×10 ⁻³ 5×10 ⁻⁴ 2×10 ⁻⁴		SSIONS INCLUDED HIPY=(993–1024) frame store lines
Ratio Count rate (s ⁻¹ keV ⁻¹) C	32 regions CHIPY CHIPY=(1 5×10^{-3} 2×10^{-3} 5×10^{-4} 2×10^{-4} 2×10^{-4} 2×10^{-4} 2×10^{-4} 2×10^{-4} 10^{-3} 10^{-3} 10^{-3} 10^{-4} 2×10^{-4} 10^{-4} 2×10^{-4} 10^{-4} 2×10^{-4} 10^{-4	Table 3 -32) -sky	0.01 5×10 ⁻³ 2×10 ⁻³ 10 ⁻³ 5×10 ⁻⁴ 2×10 ⁻⁴ 2×10 ⁻⁴		Ssions included HIPY=(993–1024) frame store lines
Ratio Count rate (s ⁻¹ keV ⁻¹)		Table in our	2: Lir study 0.01 5×10 ⁻³ 2×10 ⁻³ 10 ⁻³ 5×10 ⁻⁴ 2×10 ⁻⁴ 2×10 ⁻⁴		Sions included HIPY=(993–1024) frame store lines

- stowed data flux showed a negative correlation with the solar activities (Figure 2). (IO, VFAINT mode).
- $< \sim 10\%$ variation in spectral shapes (difference in low- and high-E flux ratio), parametrized by fitting the individual stowed spectra (Figure 2). (Mizuno et al. 2004)

The tool to generate particle background model

- We have developed software to generate a model spectrum for the particle-induced X-ray background given an input events file and extraction region.
- Compare the output spectral model to the merged data extracted from the whole chip regions (scaled to fit 9.0–11.5 keV range; Figure 3).
- Applied to an observation of an extended source on the ACIS-I array (fitted using 9.0–11.5 keV; Figure 4).
- Issues to be addressed: evaluate the uncertainty of the tool quantitatively.

- check the software bugs to publish it.

RHESSI solar flare list: https://hesperia.gsfc.nasa.gov/rhessi3/data-access/rhessi-data/flare-list/index.html