
Ultra-fast Outflows (UFOs) in Active Galactic Nuclei (AGN) were first suggested based upon low spectral resolution CCD data in the 6-8 keV range, and were ascribed to absorption by highly ionized Fe.  In this region, CCD resolution is not dramatically below that of 
gratings. Further evidence for UFOs has been claimed from high spectral resolution observations with the XMM-Newton/Reflection Gratings Spectrometer (RGS), and has been extended to Ultra-Luminous X-ray (ULX) sources.  The <2 keV region, however, is 
extremely crowded, and UFO models often posit multiple absorbers with a range of blueshifts.  It is not clear that even RGS resolution suffices.  We discuss two recent UFO studies using the Chandra-High Energy Transmission Gratings Spectrometer (HETGS). We 
gain from improved resolution, but suffer from low effective area. First, for the AGN PG1211+143, we were able to verify the presence of an absorber outflowing at 0.056c.  Next, for the ULX NGC 1313 X-1 we are still trying to determine if there is evidence for a UFO, 
and if not, do our observations contradict prior RGS studies?

The Hunt for UFOs with Chandra—HETGS  
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CCD spectra provided evidence for 0.08c outflow in PG 1211+143, via, Mg, S, and 
Fe  absorption (Pounds et al. 2003).  NuSTAR does not see these (Zoghbi et al. 
2015; due to poorer resolution, limited bandpass, or source/absorber variability?) 
Analysis of further XMM-Newton/RGS observations have indicated multiple 
emission and extreme velocity absorption components (Pounds et al. 2016). 
XMM-Newton/RGS spectra of the ULX NGC 1313 X-1 have been modeled with 
systemic emission/absorption components, and an outflow component with 
velocity 0.2c (Pinto et al. 2016; see also NuSTAR confirmation, Walton et al. 2016). 
Vaughan & Uttley (2008) have pointed out possible statistical biases in UFO 
studies: high spectral resolution is needed to disentangle components & velocities.

PG 1211+143 High Resolution Spectra

We conducted a 500 ks campaign (April 2015) of Chandra-HETGS observations of PG 1211+143, which 
included contemporaneous Hubble-Space Telescope-Cosmic Origins Spectrograph (HST-COS) spectra.  
Results are described in Danekhar et al. (2018) and Kriss et al. (2018). 
Phenomenologically fit (including narrow Fe lines at rest), flux-corrected spectra (upper, far left; shown in 
the Cosmological rest frame) exhibit a prominent residual consistent with Ne X blueshifted at 0.056c. 
A blind line search (see below) performed on unbinned data finds features consistent with 0.056c 
blueshifted lines (lower, far left).  Rebinning into rest-frame velocity bins (based upon known H- and He-
like species) finds prominent absorption at 0.056c  (lower, near left).  Locations of blue shifted absorbers 
identified by Pounds et al. (2003, 2016) are shown.  Only the 0.056c absorber is identified in individual 
features (a 0.19c absorber might be seen collectively).  
An absorber consistent with 0.056c blueshifted Ly α is detected with HST-COS (upper, near left). 
The spectral energy distribution (SED) was created from multi-wavelength data (upper, right), which was 
then used to create warm absorber models for the spectra.  These models fit well, with a column density 
of log(NH/cm-2) ~ 21.5 and ionization parameter of log(ξ/erg s-1 cm) ~ 2.9. 
The warm absorber fitted to the X-ray spectra is roughly consistent with the HST-COS absorber. 
The fitted warm absorber is consistent with being on the cusp between a thermally stable/unstable zone 
in heating/cooling diagrams (lower, right). 

NGC 1313 X-1 High Resolution Spectra
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Figure 1: Left panel: A schematic view of the physical structure of AGNs taken from (Beckmann & Shrader 2012).
Different inclinations are associated with two types of AGNs (Seyfert 1 and 2). Right panel: X-ray spectra for a
Seyfert-1 AGN (Risaliti & Elvis 2004).

produces the hard X-ray spectrum via inverse-Compton scattering. The main features of the X-ray
spectra of AGNs, shown in Figure 1 (right), include the soft excess of the accretion disk described
by thermal black-bodies, the hard excess of hot coronas over the disk in the form of a (non-thermal)
power-law, Compton reflection, warm absorbers, highly ionized outflows characterized by H-like
and He-like Fe lines, and relativistic Fe Kα fluorescent line (see e.g. Reynolds & Nowak 2003;
Miller 2007; Netzer 2013).

Technological advances in high-resolution X-ray spectroscopy, such as the X-ray Multi-Mirror
Mission-Newton (XMM-Newton), the Nuclear Spectroscopic Telescope Array (NuSTAR) and the
Suzaku Spectrometers, allow us the ability to identify and conduct detailed analysis of relativistic
disk lines in an X-ray photoionized medium, corresponding to the dynamics of warm absorbers
and relativistically ionized outflows. These X-ray observations allow us to constrain the physical
conditions (NH, column density, and ξ, ionization parameter) of high-energy plasmas in accretion
disks in AGNs using photoionization models (Yaqoob et al. 2003; Kraemer et al. 2003; Tombesi
et al. 2010, 2011, 2012).

1.1 Research Objective: Modeling Warm Absorbers in AGNs
The soft X-ray observations of AGNs hint at highly-ionized gaseous outflows, the so-called “warm
absorber”, which are present in the innermost region within the AGN structure. Over half of Seyfert
1 galaxies and quasars were found to have blueshifted warm absorbers with velocities in the range
of several hundred km s−1 (e.g. Reynolds 1997; Lee et al. 2001; Gabel et al. 2003, 2005; Detmers
et al. 2008; Tombesi et al. 2010; Gofford et al. 2013; Lee et al. 2013). The Seyfert galaxies contain
AGNs with the well known and studied warm absorbers. It is essential to understanding how the
warm absorber is formed, which aids us in gaining an overall view of the physical structure of the
AGN and its interaction with the host galaxy.
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Ultra Fast Outflows – PG 1211+143 and NGC 1313 X-1

The “Standard Model” of AGN (see diagram above; Beckmann & Shrader 2012) accounts for multiple spectral 
components: direct and reflected continuum, with the latter from both near (relativistically smeared) and far (narrow) 
from the central black hole, plus viewing angle-dependent absorption components. 
Warm absorbers have been identified since the days of CCD-resolution spectroscopic studies. Chandra-HETGS (and 
XMM-Newton/RGS) resolve these into multiple ionization components, with typical velocities of only ~100–1000 km s-1.  
The above example shows Chandra-HETGS observations of the Seyfert NGC 3783 (Brenneman et al., 2011). 
What is the evidence for Ultra-fast Outlfows (UFOs), with velocities ≳10% the speed of light?
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NGC 3783 (Chandra-HETG)

Multiple Absorbers,
~100–1000 km s-1 Pounds et al. (2003), XMM-EPIC

Absorbers:
18,300 km s-1

23,100 km s-1

39,300 km s-1

56,400 km s-1

Emitters:
350 km s-1

600 km s-1

Pounds et al. (2016), XMM-RGS

Pinto et al. (2016),  XMM-RGS
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NuSTAR XMM (Contemporaneous Observations)

Low/Hard State

We apply these techniques to Chandra-HETGS spectra of  NGC 1313 X-1, which 
should be more sensitive than XMM/RGS ~0.9–3 keV (upper, near left; Nowak 2017). 
500 ksec of Guaranteed Time Observations (GTO) were obtained July–December 
2017.  Most spectra are in a low/hard state similar to those of Pinto et al. (2016). 
(See light curve upper, far left; and spectra lower, far left). 
We perform a blind line search to unbinned data (see flow diagram, right).  Contrary 
to most searches (e.g., Zoghbi et al. 2015) we do not use fixed line energies or 
widths, but perform true fits (taking advantage of multi-core parallelization). 
Emission/absorption lines can be added to the spectra, but statistical improvements 
to the spectra are modest (lower, near left).  This is true regardless of state. 
Contrary to PG 1211+143, no pattern emerges among the fitted lines, and folding on 
velocity bins does not reveal any prominent absorption or emission systems. 
The code rewrites the model after each fit iteration, renaming lines to user 
specifications and reordering by wavelength or energy in the parameter file. Lines are 
applied additively or multiplicatively, the latter to avoid “negative counts” absorption. 
Next step in code development is to scan spectra with multiple lines simultaneously, 
with a hierarchy of functional ties among parameters.  (E.g., one set of redshift ties 
could be associated with similar ionization states, a second set of ties on wavelength 
and/or amplitude could be associated with line series.)  Are absorbers only 
statistically significant in families of lines?
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