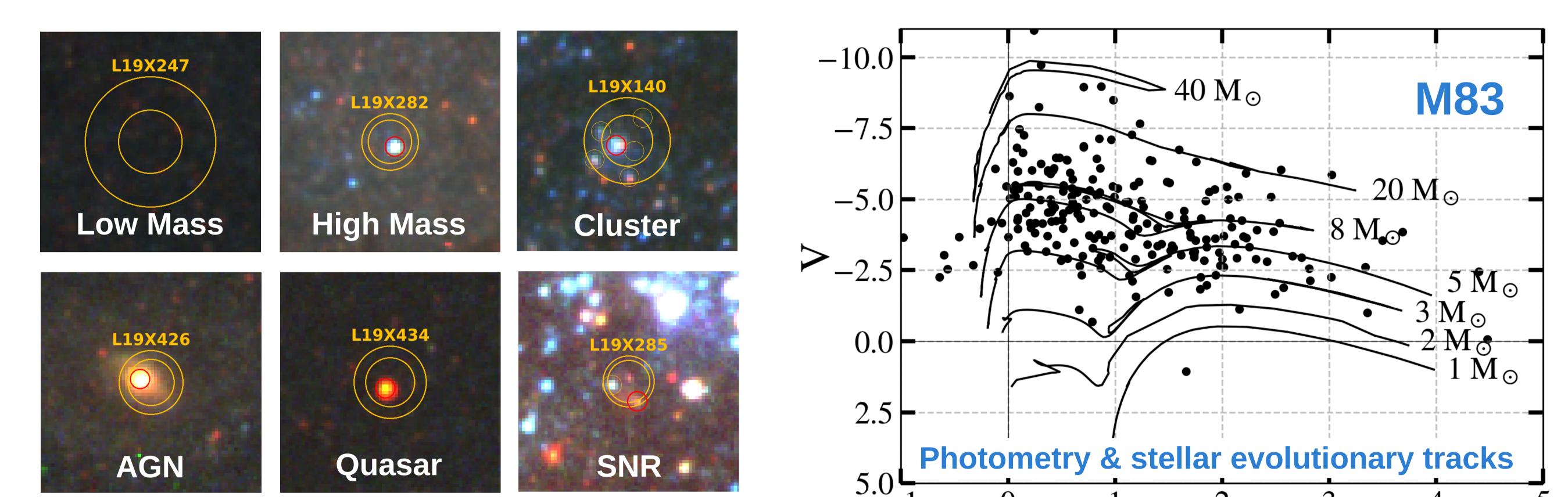


## Constructing X-Ray Luminosity Functions for X-Ray Binaries in Late-Type Galaxies



## Qiana Hunt<sup>1</sup>, Elena Gallo<sup>1</sup>, Rupali Chandar<sup>2</sup>, Angus Mok<sup>2</sup>, Shengchen Liu<sup>1</sup>, Andrea Prestwich<sup>3</sup>

<sup>1</sup>University of Michigan, Ann Arbor, <sup>2</sup>University of Toledo, <sup>3</sup>Harvard-Smithsonian Center for Astrophysics


We combine Chandra X-ray data with HST optical imaging to directly identify low mass and high mass X-ray binaries (XRBs) within M83 and construct *uncontaminated* X-ray luminosity functions (XLFs) for nearby, late-type galaxies.

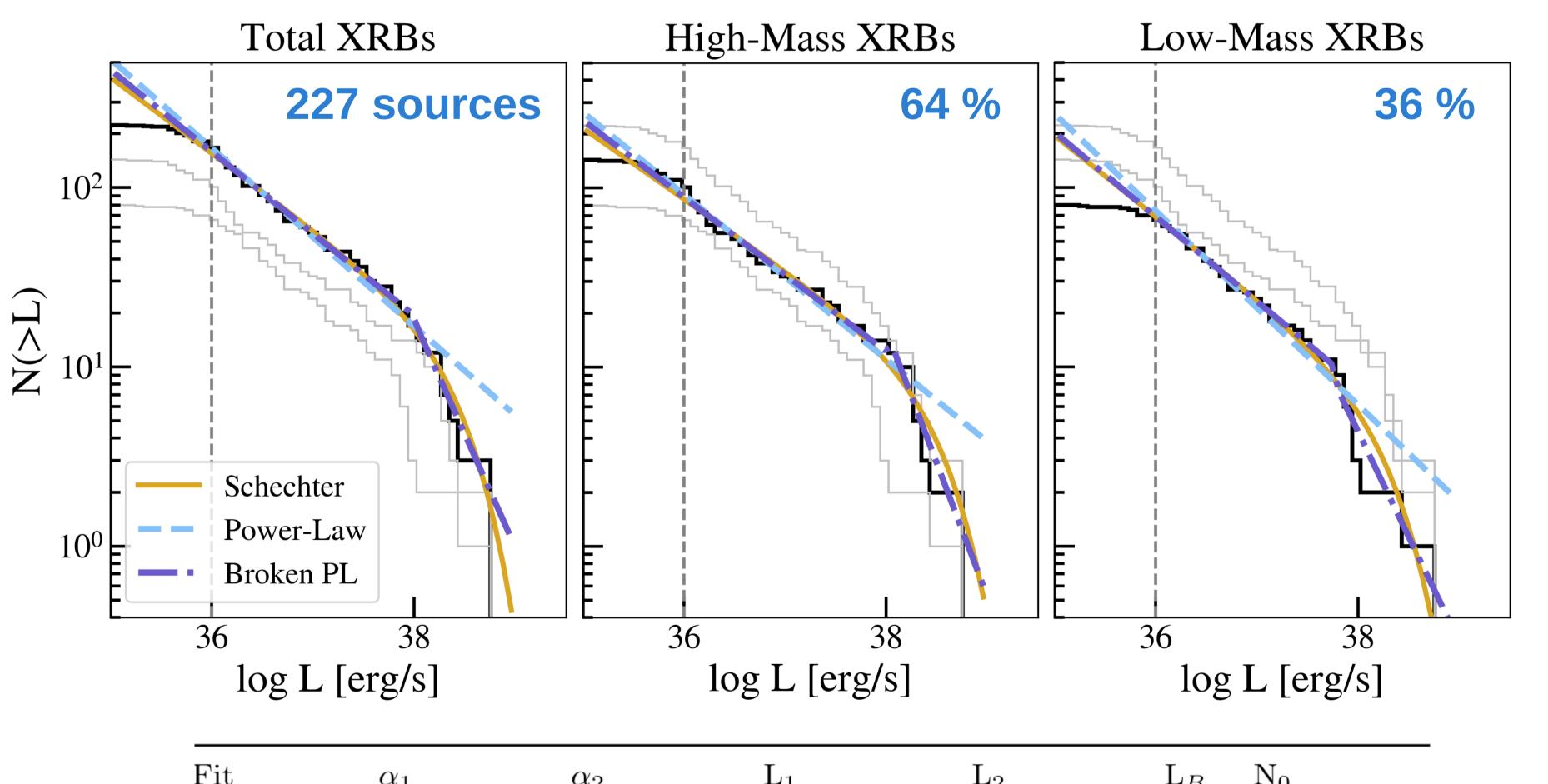
## Method

- 1. Align Chandra X-ray source positions with HST optical images.
- 2. Measure UBVI photometry of potential donors within  $2\sigma$  positional uncertainty of X-ray

sources<sup>3</sup>.

- 3. Remove non-XRB contaminants (AGN, quasars, SNRs<sup>4</sup>).
- 4. Compare magnitudes and colors of stars to theoretical stellar evolutionary tracks to estimate mass<sup>2</sup>. For clusters, estimate the age to get XRB mass<sup>1</sup>.
- 5. Generate XLFs.




**Preliminary Results** 

 Obtained an uncontaminated XLF for high-mass XRBs in M83.

 Constructed the *first* XLF for low-mass XRBs in a late-type galaxy.

**Future Work** 

Include larger sample of nearby galaxies to establish 'universal' XLFs for latetype galaxies.



V - I

## References:

[1] Chandar et al. in prep
[2] Bressan et al. 2012, MNRAS, 427, 1
[3] Lehmer et al. 2019, ApJ 234, 3
[4] Long et al. 2014, ApJSS, 212, 2



|      | Г 10                 | $\alpha_1$    | $\alpha_2$    | $\mathbf{L}_1$ | $L_2$         | $\mathbf{L}_B$  | IN <sub>0</sub> |
|------|----------------------|---------------|---------------|----------------|---------------|-----------------|-----------------|
| Tota | Schechter            | $1.42\pm0.01$ | -             | $38.48\pm0.05$ | -             | _               | $1.14\pm0.04$   |
|      | Power-Law            | $1.50\pm0.02$ | -             | $40.47\pm0.59$ | -             | -               | -               |
|      | Broken PL            | $1.46\pm0.01$ | $2.27\pm0.15$ | $40.82\pm0.32$ | $2.27\pm5.70$ | 38.0            | -               |
|      |                      |               |               |                |               |                 |                 |
|      | $\operatorname{Fit}$ | $lpha_1$      | $lpha_2$      | $L_1$          | $L_2$         | $\mathcal{L}_B$ | N <sub>0</sub>  |
| High | Schechter            | $1.40\pm0.02$ | -             | $38.58\pm0.10$ | -             | _               | $0.92\pm0.07$   |
|      | Power-Law            | $1.46\pm0.02$ | -             | $40.27\pm0.64$ | -             | -               | -               |
|      | Broken PL            | $1.43\pm0.01$ | $2.49\pm0.19$ | $40.52\pm0.47$ | $2.49\pm7.31$ | 38.0            | -               |
|      |                      |               |               |                |               |                 |                 |
|      | Fit                  | $lpha_1$      | $lpha_2$      | $L_1$          | $L_2$         | $\mathbf{L}_B$  | N <sub>0</sub>  |
| Low  | Schechter            | $1.45\pm0.02$ | -             | $38.36\pm0.06$ | -             | _               | $0.77\pm0.06$   |
|      | Power-Law            | $1.54\pm0.02$ | -             | $39.45\pm0.83$ | -             | -               | -               |
|      | Broken PL            | $1.47\pm0.01$ | $2.17\pm0.15$ | $39.89\pm0.33$ | $2.17\pm5.60$ | 37.8            | -               |