the FUTURE of HIGH-RESOLUTION X-RAY IMAGING

THE FIRST ASTROPHOTOGRAPH

Henry Draper, 1880

the FUTURE of HIGH-RESOLUTION X-RAY IMAGING is

"In astronomy, discovery eclipses physics" R. GIACCONI

R E S O L U T I O N = S E N S I T I V I T Y

0.5" PSF

0.5" PSF

RESOLUTION = SENSITIVITY **MORE DIFFICULT**

 \vdash

D

C

ш

LL

ш

R

MO

shaping and maintenance of curved grazing mitation by using flat mirrors – fringes have se in space with longer baselines.

UNIVERSITY OF LEICESTER

stitute for Space Research

The X-ray universe at μ as resolution

Single 10 spacecraft PGN keV) Sgr A* Fhinds ensed BH horiton PGN COLONAR t-ray binary orbits Formation flying (1-10 keV) SMBH 1 P 10⁹ 10³ 10⁵ 10⁷ Distance (pc)

Low mass star AU Mic (and tra exoplanet) at 10 pc. Pixel size which is just attainable on a si spacecraft.

Accreting 10⁹ M_{sol} black hole a with corona above the accretic The image is blurred to 1 μ as r (< 100 m baselines).

-m 10⁻¹⁰ kev flux (erg cm 10⁻¹¹ 10⁻¹¹ 10⁻¹²

 10^{-12}

Q

Left: 1-2 *keV point-source sensitivity* curves for 1000 cm² collecting area, assuming AGN-like spectra. With arcmin-scale collimation, background should be dominated by cosmic rays. The dotted curves show the required Athena-WFI background at 12 and solar minimum. The solid

10 r_g

Ahove: an X-ray interferometer w

 \vdash

D

C

ш

LL

ш

R

MO

100 ksec, 0.5 - 2 keV

z = 3.27 galaxy group

$3 \times 10^{13} \text{ M}_{\odot}$

2'

Lower z clusters & groups

High z active galactic nuclei

100 ksec, 0.5 - 2 keV

Lower z clusters & groups

High z active galactic nuclei

100 ksec, 0.5 - 2 keV

z=2 cluster, 100 ksec

Lower z clusters & groups

EVERY 100 KSEC HDXI EXPOSURE *is* DEEPER *than the* 7 MSEC CHANDRA DEEP FIELD SOUTH

High z active galactic nuclei

100 ksec, 0.5 - 2 k

z=2 cluster, 100 ksec

7,000 SOURCES from a "BLANK" part of the sky

100 ksec HDXI FOOTPRINTS

10 MEGASECONDS 10 SQUARE DEGREES

LEGACY FIELD

10 MEGAPARSECS

the MILKY WAY

HORIZON 5 kiloparsecs

CHANDRA HORIZON 400 parsecs

Nobody ever measures the stellar mass. That is not a measurable thing; it's an inferred quantity. You measure light, OK? You can measure light in many bands, but you infer stellar mass. Everybody seems to agree on certain assumptions that are completely unproven.

<u>Carlos Frenk, 2017 May 15</u> (44:48)

Order-of-magnitude variations in brighness when stellar field shifts by 10s of μ as.

Macrolensing gives full mass

Microlensing gives mass in stars

Chandra results: $M^*/L = 1.2 \pm 0.6$ Salpeter

exquisite post-LSST

by 100,000 Zoom-i

Lensing Galaxy

IMAGING meets SPECTROSCOPY

the DRIVERS *of* GALAXY EVOLUTION — FEEDBACK *in* ALL MODES, *on* ALL SCALES —

Structure of the galactic wind with 1 arcsec spatial and 30 km/s kinematic resolution

C

Ц.

Ш

2

MO

a NEW GREAT OBSERVATORY recipe: A = 2m² × (PSF/0.5")⁻²

the most economical way to high sensitivity

X-ray discovery engine with profound impact across all of astrophysics

strong and easily understandable model constraints

If an object does not appear in Lynx images, it does not exist!!

