Detection of Superluminal Motion in the X-ray Jet of M87

Bradford Snios (Center for Astrophysics | Harvard \& Smithsonian) P.E.J. Nulsen, R.P. Kraft, C.C. Cheung, E.T. Meyer, W.R. Forman, C. Jones, S. Murray Chandra 20th Symposium - 12/06/19

Radio Galaxy Jets

- Numerous radio galaxies known to have kiloparsecscale jets
- Knotted structure in nearby jets observed in multiwavelength observations
- Explore knot origins by investigating proper motion and variations in brightness of knots

Proper Motion Studies

- Proper motion measurements limited to nearby, fast jets
- Majority of studies performed in radio, optical, and UV
- Previously no proper motions observed in X-ray jets

X-ray Knots in M87

- Bright, nearby FR I radio galaxy (16.4 Mpc; 81 pc arcsec $^{-1}$)
- Prominent jet and knotted structure observed in radio, optical, UV, and X-rays
- Proper motion of its jet extensively studied in radio and optical/UV [Meyer+2013]
- Previously no proper motions observed in X-rays

Data Analysis

- Examined Chandra HRC observations of M87 taken over 5-year timespan (2012-2017)
- HRC observations required for higher spatial resolution and to avoid pile-up
- Images co-aligned to high accuracy using cross-correlation fit on background point sources

Proper Motion Measurements

- Measured proper motion of each knot using cross-correlation fits
- Proper motion for Knot D:

$$
\begin{aligned}
& v_{\|, D}=9.2 \pm 2.3{\text { mas } \mathrm{yr}^{-1}=2.4 \pm 0.6 c}^{v_{\perp, D}=0.4 \pm 1.2 \mathrm{mas}^{\mathrm{yr}} \mathrm{yr}^{-1}=0.1 \pm 0.3 c} \text {. }
\end{aligned}
$$

Proper Motion Measurements (II)

- AGN/HST-1 modeled as two, 2D Gaussians to quantify proper motion
- From model fits, shift in HST-1 was measured to be:

$$
\begin{aligned}
v_{\|, H S T-1} & =24.1 \pm 1.6 \mathrm{mas}^{\mathrm{yr}}{ }^{-1} \\
& =6.3 \pm 0.4 \mathrm{c}
\end{aligned}
$$

$v_{\perp, H S T-1}=10.9 \pm 0.6$ mas yr^{-1} $=2.9 \pm 0.2 c$

Comparison of Proper Motions

- X-ray results compared with measurements from other wavelengths
- Results show excellent agreement for all knots
- Upper limits on outer knots close to other average proper motions
- Follow-up observations as early as 2021 will provide a sufficiently long baseline to measure motion in majority of knots

Conclusions

- Difference maps for jet of M87 generated using Chandra HRC X-ray observations
- X-ray proper motion up to 24.1 mas yr^{-1} (6.3c) measured in the jet
- Results consistent to other wavelength measurements in both spatial positions and proper motion speeds
- X-ray and UV/optical regions co-move in the jet
- Proper motion studies will increase as Chandra archive grows

For further details, see Snios et al., 2019, ApJ, 879, 8

Thank You

