Two Decades of Evolution of Tycho's Supernova Remnant

Brian Williams NASA GSFC

NASA GSFC

Brian Williams

@bjwilli2

Six Years of Science with Chandra Dedicated to Leon Van Speybroeck

The third in a series, this meeting will highlight science results from the past six years of operation of the Chandra X-ray Observatory with emphasis on recent results. Contributions covering recent results from the XMM-Newton Observatory will also be presented.

2 - 4 November 2005

Royal Sonesta Hotel Boston Cambridge, Massachusetts

The Symposium Proceedings are now online. Talks and posters are being added to the proceedings pages daily.

Send in your poster! If you presented a poster and have not yet submitted it for the proceedings, email sixyears@head.cfa.harvard.edu for instructions.

Download the Official Symposium Flyer (high resolution PDF, 3.5 MB).

This version of the flyer includes the invited speakers and some of the science topics that will be discussed at the symposium.

One slide on personal reflections on Chandra

1 Chandra Lifetime = time to go from high-school student to "mid-career" scientist

@bjwilli2

Tycho Brahe

- Appeared in the sky in November 1572, stayed visible until early 1574
- Peak magnitude -4 (as bright as Venus)
- "helped to revise ancient models of the heavens and... challenged the Aristotelian dogma of the unchangeability of the realm of stars." (h/t some Wikipedia editor)
- Baade 1945 re-analyzed Brahe's observations and classified the supernova as "Type I"
- Light echoes discovered by Rest+ and Krause+ (2008) show it is consistent with a "normal Type Ia SN"

Tycho's SNR

TABLE 2 MAGNITUDES OF B CAS (1572)				
Date (Tycho)	Adopted Mean Date (Julian)	Description	m.,	Phase
1572 Nov Dec 1573 Jan	1572 Nov. 15 Dec. 15 1573 Jan. 15	Almost as bright as Venus About as bright as Jupiter A little fainter than Jupiter; consid- erably brighter than the brighter stars of first mag.	-4.0 -2.4 -1.4	0 ^d 30 61
FebMar AprMay July-Aug OctNov Nov	Mar. 2 May 1 Aug. 1 Nov. 1 Nov. 15 1574 Jan. 1	Equal to brighter stars of first mag. Equal to stars of second mag. Equal to α, β, γ, δ Cas Equal to stars of fourth mag. Equal to κ Cas Hardly exceeding stars of fifth mag.	+0.3 +1.6 +2.5 +4.0 +4.2 +4.7	107 167 259 351 365 412
1574 Feb Mar	Feb. 15 Mar. 15	Equal to stars of sixth mag. Invisible	+5.3	457 485

NASA GSFC

Chandra releases over the years

@bjwilli2

NASA GSFC

5 epochs of Chandra observations: 2000, 2003, 2007, 2009, 2015

NASA GSFC

@bjwilli2

Plot from Williams et al. 2016, showing that expansion velocity varies by ~50% from one side to the other, consistent with earlier results from Katsuda et al. 2008

NASA GSFC

Williams+ 2013 measured densities of surrounding ISM, found evidence of density gradient. Pre-existing ISM structure? Molecular cloud (Lee+ 2004, Zhou+ 2014)?

@bjwilli2

NASA GSFC

"But wait! Tycho is circular..."

@bjwilli2

density

+

Uniform explosion into a density gradient...

Still get a circle, but center of circle # explosion site

Dynamics of forward shock tells us about ISM. Dynamics of ejecta tell us about progenitor and explosion; see Williams+ 2017

We can measure ejecta* velocities in 3D! *ejecta = the fluffy stuff

We can measure ejecta velocities in 3D!

X,Y: Proper motions from 2003/2015 Chandra images Z: Doppler shift of Si and S lines in Chandra spectra

@bjwilli2

NASA GSFC

Note: apparent "flattening" is illusion caused by lack of data down the center of the remnant, but see Sato & Hughes 2017

@bjwilli2

N3 Model Fewer detonation points Less symmetry

Models from Seitenzahl+ (2013)

N100 Model More detonation points More symmetry

Tycho appears more consistent with symmetric expansion, perhaps implying more detonation points within the WD. <u>LOTS</u> of caveats here (possible selection biases, only Si ejecta used, substantial error bars, etc.)

@bjwilli2

Constraint on initial density profiles?

2D simulations from Wang & Chevalier (2001)

Smooth initial ejecta, structures due to Rayleigh-Taylor instabilities

3D simulations of smooth and clumpy ejecta models at age of Tycho

@bjwilli2

NASA GSFC

The kinematics of two models are very similar, but they just *look* much different...

Enter: "Genus statistics" method. Work done by my collaborators Mikio Morii (ISM/Tokyo), Toshiki Sato (RIKEN/GSFC)

A method to analyze topology of the large-scale structure of the cosmos
Calculate the Homology (count the number of holes and clumps) at each contour

@bjwilli2

NASA GSFC

The genus statistic strongly supports an initial clumped ejecta distribution as the origin of the clumps in Tycho's supernova remnant. See Sato et al. (2019)

Summary and Closing Thoughts

- Tycho appears to be the result of a normal Type Ia SN interacting with inhomogeneous ISM
- Expansion velocities of forward shock vary by 50%, range from ~4,000 to 6,000 km/s
- Kinematics of ejecta favor WD that exploded with many ignition points, symmetrical expansion, clumpy ejecta distribution
- With all the cool things happening in multi-wavelength and multi-messenger astronomy, don't forget about <u>multi-epoch</u> <u>astronomy</u>
- How can we best leverage 20 years of Chandra legacy to make progress? What would we regret not doing?
- When the next generation of observatories come online, need to think about what to do early on that will pay off later...