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Castro et al. in prep.
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For each epoch from 2000 - 2018:
- pixels are selected using a 

Weighted Voroni Tesselation with 
S/N > 80 (> 1000 counts/region)

- due to the bulk expansion of Cas 
A, the region locations and number 
of regions are epoch dependent

- spectral parameters in any region 
are a convolution of the emission 
from that region and contributions 
from adjacent pixels

- use WVT mask to inform fitting 
parameters

Broadband X-ray image of Cas A with WVT 
selected regions overlaid
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Schematic representation of how adjecent 
regions contribute to the initial spectral 
parameter estimates for the region in 
yellow

For each epoch from 2000 - 2018:
- pixels are selected using a 

Weighted Voroni Tesselation with 
S/N > 80 (> 1000 counts/region)

- due to the bulk expansion of Cas 
A, the region locations and number 
of regions are epoch dependent

- spectral parameters in any region 
are a convolution of the emission 
from that region and contributions 
from adjacent pixels

- use WVT mask to inform fitting 
parameters
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Electron Temperatures and Ionization Ages (2018)

• Fits to each region produce a distribution 
of temperatures, ionization states, and 
chemical compositions

• Comparisons of the distribution of fit 
parameters from different cardinal 
directions highlight asymmetry in the 
SNR
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QUANTITATIVE DIFFERENCES BETWEEN REGIONS
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• In each region, abundances are fit relative to 
oxygen

• Fe/Si is generally higher in east than in north (~ 
0.5)

• Results are broadly consistent with Laming & 
Hwang (2003) and 15Msun progenitor models

Beyond larger scatter in 2018 dataset, no gross 
differences are seen in the abundances between 
2000 and 2018
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QUANTITATIVE DIFFERENCES BETWEEN REGIONS
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Spectral fit clustering for east (2018)

Te

(keV)

net

(1011 s cm-3)

2000 2.1 1.5

2018 1.7 2.4

• “k-means” test computes cluster 
averages from 2D distribution

• outliers can drag mean away from “best 
fit (by eye)”

• underlying kernel is dependent upon 
the explosion, composition, and 
circumstellar properties

• differences between epochs also reflect 
underlying adiabatic expansion of the 
SNR (Sato et al. 2017)
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QUANTITATIVE DIFFERENCES BETWEEN REGIONS
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Spectral fit clustering for north (2018)

Te

(keV)

net

(1011 s cm-3)

2000 2.9 1.1

2018 1.9 1.6

• North region probably consists of more 
than one cluster

M
ilisavljevic & Fesen (2015)
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QUANTITATIVE DIFFERENCES BETWEEN REGIONS
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Spectral fit clustering for west (2018)

Te

(keV)

net

(1011 s cm-3)

2000 1.5 4.2

2018 1.5 3.2

• West region shows highest ionization 
ages

• In all, results are broadly consistent 
with results from Hwang and Laming

• changes in Te and net can be 
compared against 3D models
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COMPARISONS TO 1D HYDRO MODELS
Model Cas A evolution to compare against the 
observed properties of the ejecta

⇢CSM =
Ṁ

4⇡vwr2
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Use chemical composition 
from a model for SN 1993J, 
mapped onto a self-similar 
ejecta profile

{vw = 15 km s-1  (r > 0.2 pc)

Mdot = 2×10-5 Msun yr-1
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Spectral fit clustering for east (2018)
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q = 2.0M�
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Dan Patnaude (SAO)20 Years of Chandra

COMPARISONS TO 1D HYDRO MODELS
Model Cas A evolution to compare against the 
observed properties of the ejecta

⇢CSM =
Ṁ
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Spectral fit clustering for north (2018)

n=7 (w)

n=9 (w)

n=12 (w)

Ionization state and temperature of 
the ejecta are inconsistent with pure 
r-2 winds
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COMPARISONS TO 1D HYDRO MODELS

Possible CSM for Cas A progenitor

Model Cas A evolution to compare against the 
observed properties of the ejecta

{vw = 103 km s-1 (r < 0.2 pc)

vw = 15 km s-1  (r > 0.2 pc)

Mdot = 2×10-5 Msun yr-1

⇢CSM =
Ṁ

4⇡vwr2
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Use chemical composition 
from a model for SN 1993J, 
mapped onto a self-similar 
ejecta profile
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COMPARISONS TO 1D HYDRO MODELS

Possible CSM for Cas A progenitor

Model Cas A evolution to compare against the 
observed properties of the ejecta

10 Patnaude et al.

Table 3. One-dimensional hydrodynamics models for Cas A

nej ⌧ Te RFS ⌧ Te RFS

(1011 cm�3 s) (107 K) pc (1011 cm�3 s) (107 K) pc

Isotropic Winda Wind–Cavityb

7 7.14 2.02 2.36 2.22 1.99 2.58

9 5.73 2.14 2.35 1.67 2.07 2.56

12 3.16 2.27 2.34 3.12 2.02 2.55
aIsotropic wind models assume a progenitor wind with Ṁ = 2⇥10�5 M�

yr�1 and vw = 15 km s�1. Both models assume an explosion energy of

1.5⇥ 1051 erg and . 3M� of ejecta (Shigeyama et al. 1994). bWind–

cavity models assume a cavity wall at ⇠ 0.2 pc. The circumstellar

properties external to the cavity are the same as the isotropic wind

model, while internal to the wall, the environment is shaped by a 1000

km s�1 wind and mass-loss rate the same as in the isotropic wind case.

Note—Quoted electron temperatures and ionization ages are for a mass

coordinate of q = 1.5M� at tSNR = 340 years.

CSM models which include a small cavity 
produce larger SNR at 340 years, and 
generally lower ionization ages in the shocked 
ejecta
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yr�1 and vw = 15 km s�1. Both models assume an explosion energy of

1.5⇥ 1051 erg and . 3M� of ejecta (Shigeyama et al. 1994). bWind–

cavity models assume a cavity wall at ⇠ 0.2 pc. The circumstellar

properties external to the cavity are the same as the isotropic wind

model, while internal to the wall, the environment is shaped by a 1000

km s�1 wind and mass-loss rate the same as in the isotropic wind case.

Note—Quoted electron temperatures and ionization ages are for a mass

coordinate of q = 1.5M� at tSNR = 340 years.

CSM models which include a small cavity 
produce larger SNR at 340 years, and 
generally lower ionization ages in the shocked 
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cavity models assume a cavity wall at ⇠ 0.2 pc. The circumstellar

properties external to the cavity are the same as the isotropic wind

model, while internal to the wall, the environment is shaped by a 1000

km s�1 wind and mass-loss rate the same as in the isotropic wind case.

Note—Quoted electron temperatures and ionization ages are for a mass

coordinate of q = 1.5M� at tSNR = 340 years.

CSM models which include a small cavity 
produce larger SNR at 340 years, and 
generally lower ionization ages in the shocked 
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cavity models assume a cavity wall at ⇠ 0.2 pc. The circumstellar

properties external to the cavity are the same as the isotropic wind

model, while internal to the wall, the environment is shaped by a 1000

km s�1 wind and mass-loss rate the same as in the isotropic wind case.
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1.5⇥ 1051 erg and . 3M� of ejecta (Shigeyama et al. 1994). bWind–

cavity models assume a cavity wall at ⇠ 0.2 pc. The circumstellar

properties external to the cavity are the same as the isotropic wind

model, while internal to the wall, the environment is shaped by a 1000

km s�1 wind and mass-loss rate the same as in the isotropic wind case.

Note—Quoted electron temperatures and ionization ages are for a mass

coordinate of q = 1.5M� at tSNR = 340 years.

CSM models which include a small cavity 
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r = 0.3 pc

Origin of the cavity could be from:
  i: binary interaction
  ii: enhanced, late stage mass loss
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vwind = 10 km s-1

vwind = 103 km s-1

CSM properties for several Ib/c and IIb 
SNe and SNR

- cavities around IIb and Ib/c SNe appear to be 
common
- an increase in X-ray emission signals the 
interaction between the shock and denser 
circumstellar material
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data from: Dwarkadas & Gruszko (2012); Margutti et al. (2017); 
Kundu et al. (2019); Patnaude et al. (2019, in prep); Milisavljevic 
& Fesen (2008); Lee et al. (2014); Xi et al. (2019)
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COMPARISONS TO 1D HYDRO MODELS
1D models also inform us on large scale 
azimuthal asymmetries in the ejecta
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• In broad terms, different cardinal 
directions favor different ejecta power 
law indices

• When ejecta mass and ejecta core 
density are held constant, lower values 
of “n” correspond to higher explosion 
energies
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Spectral fit clustering for east (2018)
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COMPARISONS TO 1D HYDRO MODELS
1D models also inform us on large scale 
azimuthal asymmetries in the ejecta
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• In broad terms, different cardinal 
directions favor different ejecta power 
law indices

• When ejecta mass and ejecta core 
density are held constant, lower values 
of “n” correspond to higher explosion 
energies
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Spectral fit clustering for north (2018)
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization —> Fraschetti et al. argued that 
this is due to interaction w/ a molecular cloud

• Zhou et al. showed that cloud is not coincident with Cas A

• optical observations suggest a larger concentration of CSM in that 
direction (QSFs) which would lead to multiple reflected shocks in 
the ejecta, raising the ionization age
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization —> Fraschetti et al. argued that 
this is due to interaction w/ a molecular cloud

• Zhou et al. showed that cloud is not coincident with Cas A

• optical observations suggest a larger concentration of CSM in that 
direction (QSFs) which would lead to multiple reflected shocks in 
the ejecta, raising the ionization age W
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization —> Fraschetti et al. argued that 
this is due to interaction w/ a molecular cloud

• Zhou et al. showed that cloud is not coincident with Cas A

• optical observations suggest a larger concentration of CSM in that 
direction (QSFs) which would lead to multiple reflected shocks in 
the ejecta, raising the ionization age
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization — Fraschetti et al. (2018) argued 
that this is due to interaction with a nearby molecular cloud

• Zhou et al. showed that cloud is not coincident with Cas A

• optical observations suggest a larger concentration of CSM in that 
direction (QSFs) which would lead to multiple reflected shocks in 
the ejecta, raising the ionization age
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization — Fraschetti et al. (2018) argued 
that this is due to interaction with a nearby molecular cloud

• Zhou et al. showed that cloud is not coincident with Cas A

• optical observations suggest a larger concentration of CSM in that 
direction (QSFs) which would lead to multiple reflected shocks in 
the ejecta, raising the ionization age
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Spectral fit clustering for west (2018)
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization — Fraschetti et al. (2018) argued 
that this is due to interaction with a nearby molecular cloud

• Zhou et al. showed that cloud is not coincident with Cas A

• optical observations suggest a larger concentration of CSM in that 
direction (QSFs) which would lead to multiple reflected shocks in 
the ejecta, raising the ionization ageFr
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization — Fraschetti et al. (2018) argued 
that this is due to interaction with a nearby molecular cloud

• Zhou et al. (2017) showed that cloud is not coincident with Cas A

• optical/NIR observations suggest a larger concentration of CSM in 
that direction (QSFs; Koo et al. 2017) which would lead to multiple 
reflected shocks in the ejecta, raising the ionization age
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AZIMUTHAL DIFFERENCES IN SPECTRAL FITS

• Spectral fits in the east regions point to lower ejecta densities

• observed lower densities suggest 56Ni heating of ejecta plume

• radioactive heating can alter ejecta structure and force a different 
time evolution of the density

• west region shows highest ionization — Fraschetti et al. (2018) argued 
that this is due to interaction with a nearby molecular cloud

• Zhou et al. (2017) showed that cloud is not coincident with Cas A

• optical/NIR observations suggest a larger concentration of CSM in 
that direction (QSFs; Koo et al. 2017) which would lead to multiple 
reflected shocks in the ejecta, raising the ionization age
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CONCLUSIONS

• X-ray observations of thermal emission from SNR inform 
us on the properties of both the circumstellar environment 
and explosion

• Cas A shows azimuthal variations in the bulk spectral 
properties of the ejecta — can be explained by 56Ni 
heating of ejecta in the east and (possibly) the north

• Spectral features (ionization age, line centroids) 
suggest a late stage enhanced mass loss event in Cas 
A, possibly due to a short YSG phase or binary 
interaction
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WHAT COULD BE DONE IN THE NEXT 20 YRS?
• Uncover any unshocked iron — reconcile with models for 

explosive nucleosynthesis, mixing, etc.,

• Measure the blastwave deceleration — combined with 
measurements of synchrotron emission changes, provides a 
direct measurement of the CR diffusion parameter

• Determine the nature of the nonthermal emission located in 
the main shell — is it from the reverse shock or forward shock 
seen in projection?

• Settle the question of the cooling CCO — is it real or a 
detector artifact?


