The Einstein Observatory

When X-ray observations became astronomy

Perspective

Einstein - The Galilean telescope for X-ray Astronomy

CENTER FOR AST

Imaging (~5"-40") Wide spectral range: ~0.4 – 20 keV

NASA HEAO-2 (the Einstein Observatory) Launch: 13 November 1978 Re-enter & burn-up: 25 March 1982

HRI - High Resolution Imaging camera, 0.15-3 keV IPC - Imaging Proportional Counter, 0.4 to 4 keV SSS - Solid State Spectrometer, 0.5 to 4.5 keV FPCS - Bragg Focal Plane Crystal Spectrometer Coaxial instrument MPC - Monitor Proportional Counter, 1-20 keV ASTROPHYSICS

CENTER FOR

In ~3.5 years, Einstein revealed the hot universe

Stellar evolution and its end products

Hot ISM Baryon evolution Dark Matter

12/13/19

HARVARD & SMITHSONIAN

X-ray bkg

With the Einstein Observatory began Riccardo Giacconi's Cultural Revolution in Astronomy

From the Einstein Observatory It Propagated to Hubble Space Telescope, ESO, Chandra, ALMA,

Riccardo Giacconi and the Cultural Revolution in Astronomy

• A 'business model' for astronomy teams

- Scientific leadership and management
- Integrated science-technical teams, with scientists doing both functional

Astronomers have embraced the use of multi-wavelength observations from radio to X-rays

· Data Centers

- Einstein Observatory Guest Observer Program
- Einstein Users committee
- Data Archives
- People were very nervous at the time....

(my) Einstein Archival Research

- An X-ray Catalog and Atlas of Galaxies Fabbiano, Kim & Trinchieri 1992
 - 450 nearby galaxies found in Einstein observations (238 detection , 212 upper limits)
- Follow-up spectral properties Kim, Fabbiano & Trinchieri 1992a, b

Einstein archival work provided The basis for our understanding of the X-ray emission of galaxies

XRB populations (LMXB, HMXB) and their relation with SFR & stellar mass

See Fabbiano 1989, ARAA

X-ray luminosity is enhanced with active star formation

Fabbiano et al. 1982

HARVARD & SMITHSONIAN

G. Fabbiano

The basis for our understanding of the X-ray emission of galaxies Fabbiano & Shapley 2002 - Statistical Study of **234 SO-Irr normal galaxies**

 L_X of disk and irregular galaxies ~ L_{FIR} (i.e., star formation) – HMXB populations L_X of bulge spirals ~ L_H (integrated stellar mass) – LMXB populations

Hot ISM and its properties

See Fabbiano 1989, ARAA

Hot outflows from starburst nuclei NGC 253

Fabbiano & Trinchieri 1984

Hot ISM and its properties

And now with Chandra we can study LMXB populations & 'clean full range of hot ISM

Boroson et al. 2011

CENTER FOR ASTROPHYSICS

Elvis et al. 1992

- Catalog of 819 sources detected during Einstein slews in between targets
- 313 not previously known
- Data distributed on CD-ROM
- Many are TeV Gamma ray sources

Riccardo Giacconi and the Cultural Revolution in Astronomy

Data beyond the end of the project

- Archival data get re-used, increasing their discovery potential with time
- The adoption of data interoperability standards for astronomy is a result of this philosophy
- Developed by the International Virtual Observatory Alliance

The legacy of Riccardo Giacconi and of the Einstein X-ray Observatory lives on, in

- Our understanding of the 'hot' universe
- The way we do astronomy

ASTROPHYSICS

CENTER FOR