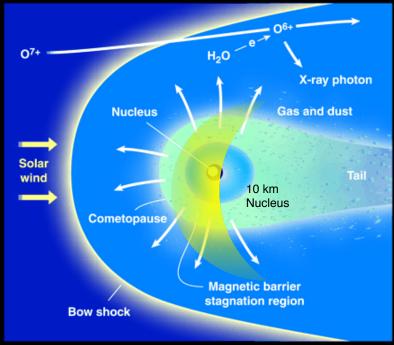
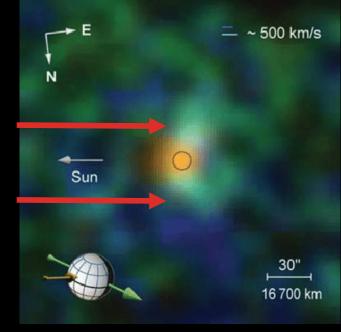
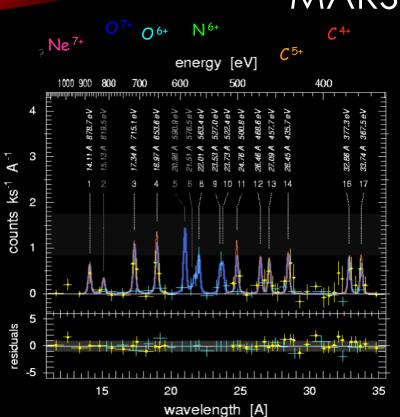

HIGH ENERGY AFFECTS OF EXOPLANET HOST STARS


Scott Wolk (SAO/CfA)

27 YEARS OF CHANDRA TIMELINE The Exoplanet zoo

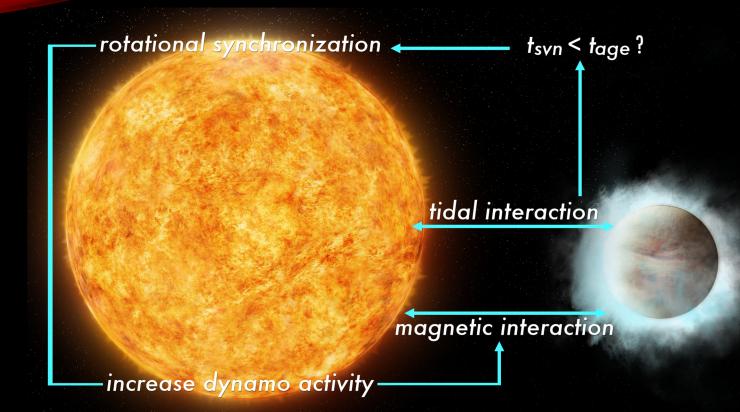
- 1992 Planets around pulsars
- 1995 51 Peg announced
- 1996 mirror assembly complete
- 1999 Chandra Launched
- 2006 CoRoT Launched
- 2009 Kepler Launched
- 2018 TESS Launched


X-RAYS IN OUR OWN SOLAR SYSTEM: COMETS

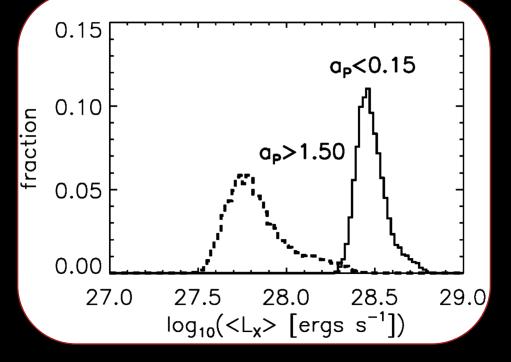

(Lisse, Wolk+ 2001)

Scott J. Wolk (CfA)

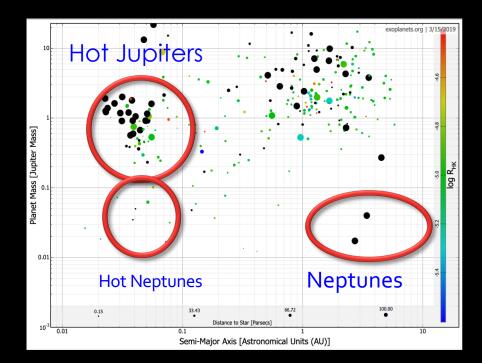
MARS IS CURRENTLY LOSING C⁵⁺ ATMOSPHERE



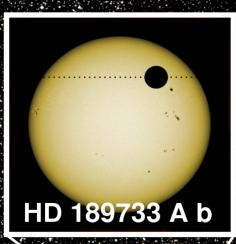
Scott J. Wolk (CfA)

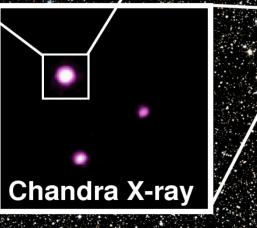

Star Planet Interaction

Cuntz et al. 2000


Evidence for Star-Planet Interaction?

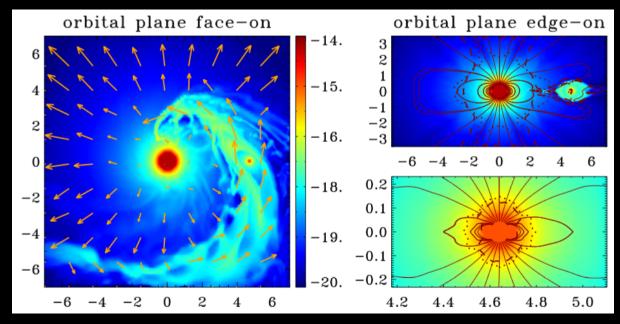
- Direct observation of phased emission from Ca II HK lines (Shkolnik et al. 2003, 2008)
- Stars with hot Jupiters are brighter in X-rays (Kashyap et al. 2009)
- But both results were disputed. (Poppenhager et al. 2010, 2011)


TIMELINE


- 1992 Planets around pulsars
- 1995 51 Peg announced
- 1999 Chandra Launched
- 2006 CoRoT Launched
- 2009 Kepler Launched
- 2018 TESS Launched

51 PEG (POPPENHAEGER+ 2009)

- Weak emission in the O VII triplet and emission around 200 eV which can be explained most likely by **cool** silicon emission lines.
- A coronal temperature of **1 MK** is consistent with the detected hardness ratios in different energy bands in both the XMM and the Chandra pointing as well as in the ROSAT observation carried out 16 years earlier.
- The constant and very low surface X-ray flux level together with a flatactivity behavior in chromospheric Ca II H and K line fluxes suggests 51 Peg to be a Hot Jupiter-bearing Maunder minimum candidate.

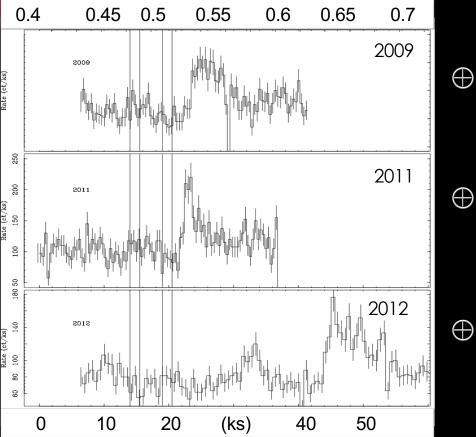


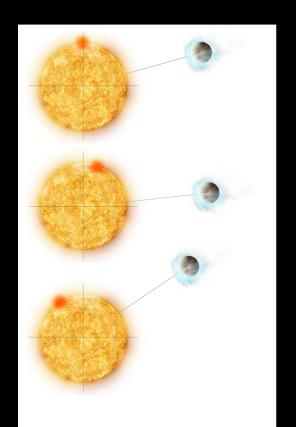
THE GOLD STANDARD: HD 189733

– An active K1V at 19 pc ($L_x \sim 10L_{x\odot}$) – Age estimated at 0.6 Gyr

	HD 189733A	HD 189733b	HD 189733B
Туре	K 1.5 V	planet	M4V
Mass	0.81 M⊙	1.15 M _{iup}	0.2M⊙
Radius	0.76 R⊙	1.26 R _{iup}	
Orbital Period		2.219d	3200 yr
Mean orbital radius		0.03 AU	216 AU

Plausibility Argument: Accreting Streams and Tails

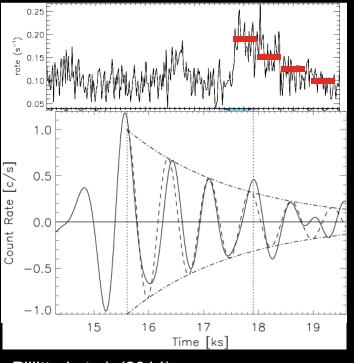



Matsakos et al. (2015)

Scott J. Wolk

Phased Time Variability?

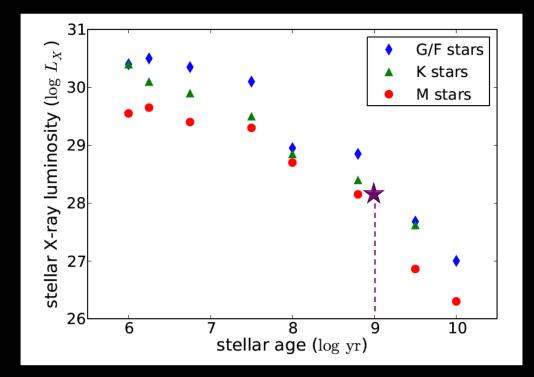
Pillitteri et al. (2014)


Scott J. Wolk

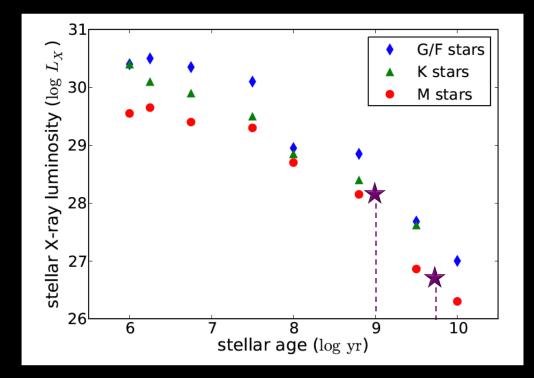
X-ray Flare of HD 189733

2D wavelet analysis of 2012 light curve Description: A damped magneto acoustic oscillation in the flaring loop. $\Delta I/I \sim 4\pi n k_{\rm B} T/B^2$

T~ 12 MK n: density= $5x10^{10}$ cm⁻³ (from RGS data)


 $\begin{array}{l} \tau \sim \ \text{L/c}_{\text{s}} \\ \text{c}_{\text{s}} &= \ \sim T^{0.5} \\ \tau = \ \text{oscillation period} \ \sim \ 4 \ \text{ks} \\ \text{L=Const. X} \ \tau_{\text{osc}} \text{NT}^{0.5} \\ \text{L} \sim 5 \ \text{R}_{*} \end{array}$

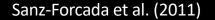
Pillitteri et al. (2014)

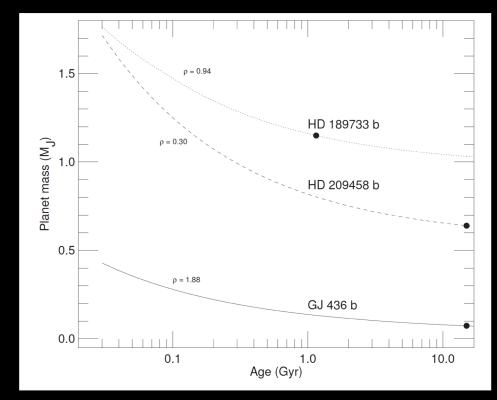

Implication of the wavelet analysis

THE AGE OF HD 189733A

Poppenhaeger & Wolk (2014)

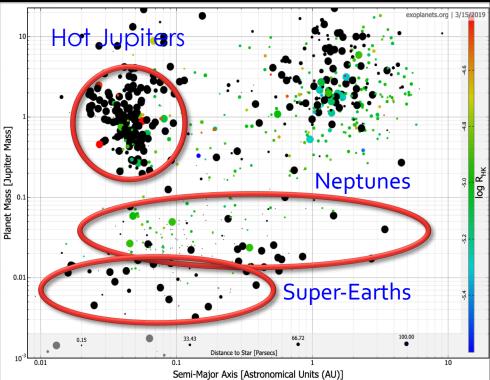
THE AGE OF HD 189733A&B

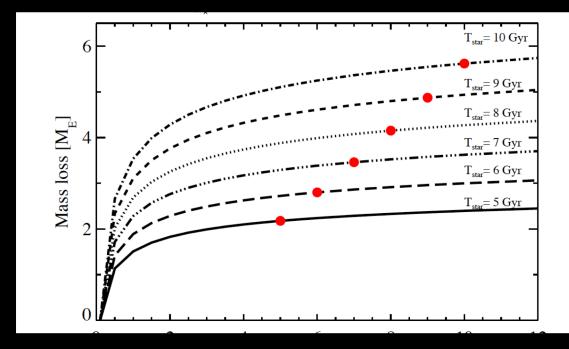

Poppenhaeger & Wolk (2014)


WHAT DOES THIS MEAN FOR THE PLANETS?

 $\dot{M} = \frac{4\pi\beta^{3}R_{p}F_{XUV}}{GKM_{p}}$

 β Atmospheric inflation K: Roche lobe overflow


$$\dot{M} = \frac{3F_{XUV}}{G\rho}$$

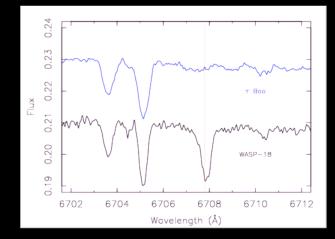

TIMELINE

- 1992 Planets around pulsars
- 1995 51 Peg announced
- 1999 Chandra Launched
- 2006 CoRoT Launched
- 2009 Kepler Launched
- 2014
- 2018 TESS Launched

GJ 1214b: SUPER-EARTH

- M4
- 1.6 day period.
- Planet is about 6 Earth masses...
- ...but has lost several Earth masses of atmosphere

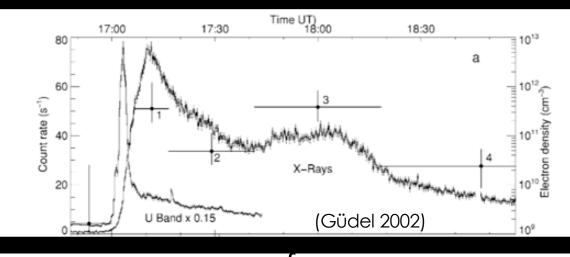
(Lalitha et al. 2014)

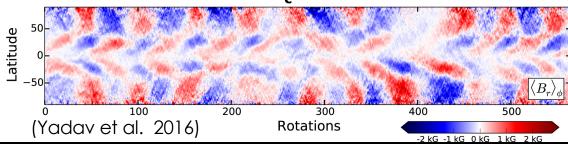

WASP-18 another kind of interaction

Single star: Young F6 WASP-18b 10.4 M_{Jup} , $a\sim 0.02 AU$; = 3.5 R P_{rot} =22.6h

 $\begin{array}{l} L_x \text{ WASP-18} < 10^{26.5} \, \text{erg/s} \\ L_x \text{ Tau Boo} & \sim 10^{28} \, \text{erg/s} \\ L_x \text{ Procyon} & \sim 10^{28} \, \text{erg/s} \end{array}$

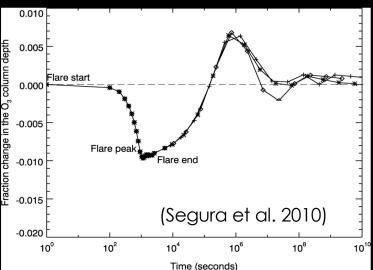
WASP 18 is YOUNG


Pillitteri, Wolk et al. (2014)

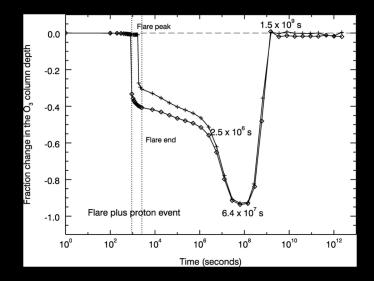

WASP-18 another kind of interaction

	Ŧ	5			<u> </u>	1 5/			
Star	T_{eff}	\mathbf{R}_{star}	M_{star}	\mathbf{M}_{planet}	Separation	$\log R'_{HK}$	H_P	H_t	H_t/H_P
	K	R_{\odot}	${ m M}_{\odot}$	M_{Jup}	AU		km	km	
WASP-18	6400	1.29	1.28	10.43	0.02047	-5.43 🗟	419	498.3	1.189
WASP-12	6300	1.599	1.35	1.404	0.02293	-5.5	600.1	122.3	0.204
WASP-14	6475	1.306	1.211	7.341	0.036	-4.923	458.7	44	0.096
XO-3	6429	1.377	1.213	11.79	0.0454	-4.595	505.5	39.4	0.078
HAT-P-7	6350	1.84	1.47	1.8	0.0379	-5.018	735.5	37.2	0.051
HAT-P-2	6290	1.64	1.36	8.74	0.0674	-4.78	625.6	14.6	0.023
Kepler-5	6297	1.793	1.374	2.114	0.05064	-5.037	740.9	14.1	0.019
HÂT-P-14	6600	1.468	1.386	2.2	0.0594	-4.855	516	3.4	0.007
HAT-P-6	6570	1.46	1.29	1.057	0.05235	-4.799	545.9	2.6	0.005
Kepler-8	6213	1.486	1.213	0.603	0.0483	-5.05	568.8	2.3	0.004
WÂSP-17	6650	1.38	1.2	0.486	0.0515	-5.331	530.7	1.1	0.002
HAT-P-9	6350	1.32	1.28	0.67	0.053	-5.092	434.7	1	0.002
WASP-19	5500	1.004	0.904	1.114	0.01616	-4.66	308.5	55.2	0.179

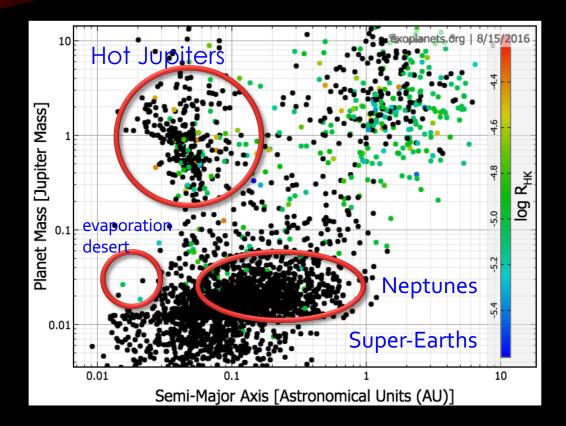
PROXIMA CEN


- M5.5
- •~5Gyr
- But a young star!
- 1.3 Earth mass
- In HZ
- 11 day period
- 11 R

Exoplanet Impacts


How do the characteristics of flares change with time and what impact does this have on exoplanet conditions? Given an M star with an Earth mass planet in the habitable zone...

Flare Alone


A strong flare depletes 1% of the ozone. This recovers in ~11 days.

Flare + Coronal Mass Ejection

A strong flare combined with a CME depletes nearly all of the ozone...for 50 years!

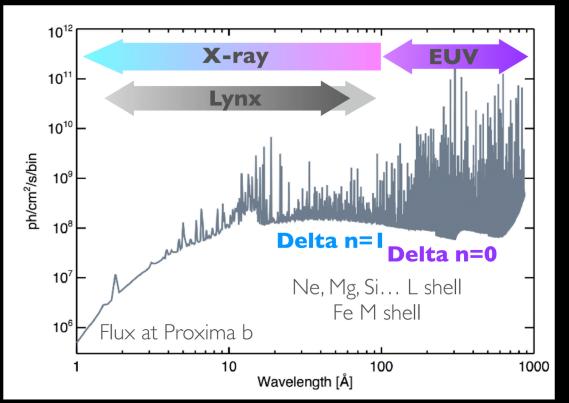
THE EXOPLANET ZOO

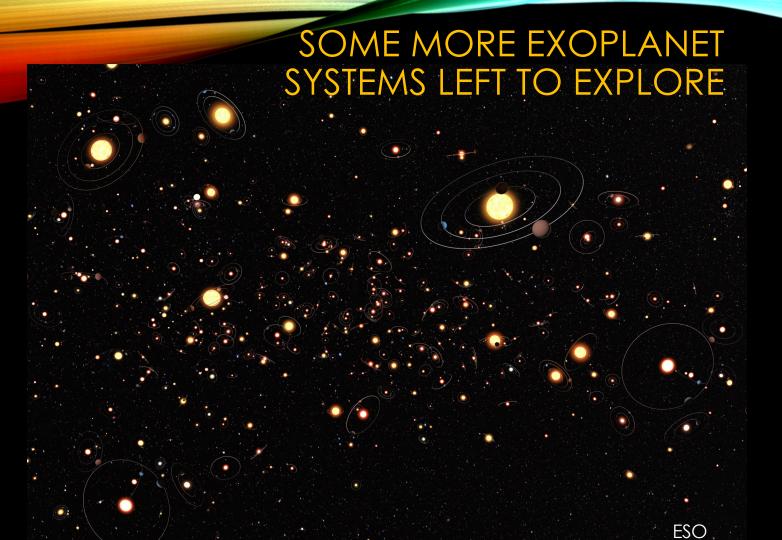
X-RAYS AND (EXO)PLANETS: STATUS 2019

- 1. High energy flux is important to the evolution of a planet's atmosphere and is very individual experience for each planet.
 - 1. XUV flux can remove significant amounts of atmosphere.
 - 2. XUV flux can add additional energy.
- 2. Planets affect their host stars...through tidal effects, Hot Jupiter's can spin-up stars with large convective zones.
- 3. Planetary feedback leads to enhanced activity
 - 1. This activity can include system scale stellar flares.
 - 2. Through magnetic effects planets appear to induce active regions on the stellar surface.
 - 3. This can make the inferred age deviate from the actual age.
- 4. We have seen a planetary transit in X-rays and the planet is much "bigger" in X-rays than in any other wavelength.

Future Exoplanet Stellar Studies

- Searching for habitability
- Focused on low mass M dwarfs
 - Habitable zones are closer to star
 - Maybe not such a good idea
- Issues include destruction of atmosphere by:
 - Stellar flares and concurrent CME's
 - Planets can recover from massive flare/proton flux ...but it takes time (Segura+ 2010)
 - Stellar UV to X-ray radiation
 - But UV is promising for catalyzing prebiotic chemistry (Ranjan & Sasselov 2016)
 - EUV will not be directly observable for most planets and so must infer from X-ray





Athena:

The coronal emission of stars affect exoplanets.

- Planetary atmospheric evolution is fundamentally linked to XEUV emission
- X-rays trace magnetic structure directly

