A New Revolution for Planetary X-ray Emission Through Chandra, XMM and Juno

W. Dunn, G. R. Gladstone, Z. Yao, D. Weigt, G. Branduardi-Raymont, D. Grodent J-U. Ness, E. Woodfield, S. Kotsiaros, A. Sulaiman, A. Wibisono, W Kurth, G. Clark, C. Paranicas, B. Mauk, J. Connerney, B. Snios, R. Kraft, E. McClain,

An Einstein Observatory Jupiter

[Metzger et al. 1983]

A ROSAT Jupiter

[Waite & Gladstone 1994]

The First Planetary X-ray Revolution

A Chandra Jupiter

Gladstone et al. Nature, 2002

An X-ray Map of Jupiter

Average Chandra Jupîter X-Ray Map

X-ray Heat Map

Red Contours are Magnetic Field Strength

Blue contours show the footprints of Io and the UV main auroral oval.

X-ray Hot Spots at Each of Jupiter Poles

Dunn et al. Nature Astro, 2017

Quasi-Periodic X-ray Aurora

Chandra Jupiter X-rays - December 18, 2000

Quasi-Periodic X-ray Aurora

Chandra Jupiter X-rays - December 18, 2000

[Gladstone et al. 2002; Dunn et al. 2017]

Quasi-Periodic X-ray Aurora

2016

Southern Aurora Fourier Transform PSDs

Chandra Jupiter X-rays - December 18, 2000 Brightness (R) 30.0 20.0 10.0 0.0 CXO Auroral Lightcurves 1 June 2016 CML / 40 70 100 130 160 190 60 50 40 North 30 South 20 10 0 50 100 150 200 250 300 350 Time /mins

[Gladstone et al. 2002; Dunn et al. 2017]

Branduardi-Raymont et al. (2004; 2008); Cravens et al. (2003); Gladstone et al. (2002)

X-ray Aurora Morphology

Electron Aurora (Big Dots)

Hard X-rays (E> 2keV)

Bremsstrahlung from precipitating electrons along the main UV oval

Ion Aurora (Small Dots)

Soft X-rays (E< 2keV)

Charge Exchange lines from precipitating ions

Map beyond 50 RJ

The Juno-Chandra-XMM Revolution

X-ray Comparisons with Particle Data

Juno measures ion (and electron) populations.

Chandra ACIS Observations of Oxygen line locations are remotely tracing these ion precipitations.

Dunn + Rymer (prep)

Juno JEDI PJ 11 Measurements of the North Pole Oxygen Ion Energy Fluxes

Juno UVS – Chandra Overlays

Gladstone [prep]

Juno UVS – Chandra Overlays

Gladstone [prep]

Synchronised X-ray-UV Polar Pulsations

Lower lightcurve shows coincident XMM-Newton Northern X-ray and HST UV polar emissions from 2^{nd} April 2019 (HST data from D. Grodent) - Pearson Correlation Coefficient = 0.72

X-ray and UV Polar Aurora Lightcurves April 2019

So what causes Jupiter's X-ray Aurora?

X-ray Aurora Variability Over 1 Week (July 2019)

Chandra X-ray Jupiter Polar Maps - ObsID 22146 (Jul 13 01:45 - Jul 13 08:43)

Dunn & Weigt [prep]

The Drivers of X-ray Auroral Flares

Lomb-Scargle's show that the magnetic field and X-ray aurora pulse with the same periodicity [Yao & Dunn et al. in prep]

The Drivers of X-ray Auroral Flares

EMIC Waves at X-ray Auroral Pulsation Rates (Expanded)

A BIG THANK YOU to Ed, Jan and the CXO planning team

Summary

Chandra and XMM have revolutionized our understanding of the high energy environments of the outer planets

The Juno-Chandra-XMM campaigns are providing a treasure trove of planetary and Xray astronomy science revealing precisely how X-ray signatures connect with in-situ processes and UV, radio and IR emissions.

Quasi-Periodic Planetary X-ray flares/ are produced by wave-particle interactions, which are critical for driving the movement of energy (and its explosive release) in these plasma regimes

Contact William Dunn: <u>w.dunn@ucl.ac.uk</u>, Twitter: @astro__will

ObsID 22148 (Jul 15 13:13 - Jul 15 13:43)

90°

90°

UV Aurora Context

Credit: D Grodent

Io and the Plasma Torus

Io's volcanoes eject ~1 ton/s, producing a torus of plasma and neutrals around Jupiter

Schneider & Bagenal [2007]; Image: NASA New Horizons

Jupiter is Hotter, Faster, Stronger

1

Hot Plasma + Injections

lo injects > 1000 kg/s"

2 Fast Rotation Jupiter rotates every 10 hours, forcing plasma to rotate quicker than Keplerian motion

3

Strong Magnetic Field

Jupiter's magnetic moment is 20,000 times that of Earth. Jupiter's surface field at the poles is \sim 10s G.

4

Resulting Magnetosphere

Jupiter's substantial thermal plasma pressure (beta ~100) leads the magnetosphere to be twice the size it would be from magnetic pressure alone. Its rapid rotation centrifugally confines the plasma to a disk

In Jupiter's outer magnetosphere T~keV, n~0.02cm⁻³, Plasma beta~10-100, B~nT

Bagenal et al. [2014]

Aurora

How do we go about understanding the processes in Jupiter's outer magnetosphere?

Aurora provides a video of the processes occurring in a magnetosphere

Juno Era Results – Identifying the Auroral Drivers 2: Trigger Events

Auroral Triggers

Comparing changes in auroral behaviour with simultaneous *in-situ* data allows us to identify the physical processes that drive rapidly rotating magnetospheres and aurora [Dunn + Ness, prep]

Dynamic Spectra: Energisation with Brightening

Wavelet of Jovian Aurora

CC

- -1

ASTROPHYSICS

HARVARD & SMITHSONIAN

CENTER FOR

North Aurora Wavelet Power Spectrum

Center for Astrophysics | Harvard & Smithsonian

Juno JEDI Energetic Particles Vs Xray Observations

Juno measures ion (and electron) populations.

Chandra ACIS Observations of Oxygen line locations are remotely tracing these ion precipitations.

Rymer + Dunn (prep)

Juno JEDI PJ 11 Measurements of the North Pole Oxygen Ion Energy Fluxes

Juno July 16-17 2017

- Juno was at 58-68 RJ
- Southern lobes <-> plasma sheet.
- first opportunity to connect magnetospheric conditions with X-ray auroral emissions.

XMM Observation July 16-17 2017

- 26 Hour XMM Observation
- Highly Pulsed Auroral Emission

Juno WAVES Radio data also pulses at 1kHz

WAVES data from A. Sulaiman and W. Kurth

Synchronised X-ray-Radio Pulsations

Synchronised X-ray-Radio Pulsations

Synchronised X-ray-Radio Pulsations

Overlaid 1 kHz radio and light-travel shifted X-ray time series shows that they seem to be synchronized. Pearson Correlation Coefficients of 0.55-0.7. Grey boxes = intervals when aurora was not in view for one instrument

X-ray and 1kHz Lightcurves July 2017

Jupiter-Stellar Flare Parallels? (with plenty of caution)

- Top left : Solar Synchronised Type III Radio and X-ray Flares (e.g. Doddamani et al 2012)
- Lower Left: Jupiter Type III (also synchronized with X-ray flares)
- Below: Schematic for Solar production (Kontar et al. 2017)

Synthetic Spectrum from Juno data

CX+DE Model

In-Situ Ion Flux Simulated Spectrum Vs XMM Observation

Houston et al. simulate an X-ray spectrum through Monte Carlo simulations of ion precipitation into the Jovian atmosphere.

They take Juno JEDI ion measurements from PJ7.

We compare this with XMM observations from PJ7

EMIC waves also lead to Electron precipitation

Sulphur and Oxygen Ion Cyclotron waves couple well to energetic (>100keV) S+ and O+

Surprisingly, they also couple very strongly to the full energy range of electrons.

This allows them to drive both ion and electron precipitation into the pole of Jupiter.

[work by Emma Woodfield]

ObsID 22148 (Jul 15 13:13 - Jul 15 13:43)

90°

90°