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I ntroduction

This exercise is designed to give a brief introduction to agpect of timing analysis: Fourier transforms
(executed via a Fast Fourier Transform, FFT, of discreta)datd their associated Power Spectral Densities
(PSD). Parts of this exercise have been cribbed from Toma#or8s tutorial that was presented at the
European “24 School on Multiwavelength Astronomy” (June 28-July 9, 20%hich can be found at:

htt p: // ww. bl ack- hol e. eu/ i ndex. php/ school s- wor kshops- and- conf er ences/
2nd- school - on- nul ti wavel engt h- ast r onony/ progr am

There you can also find a very good presentation by MichieldemKlis describing in much more detail
the fundamentals of Fourier techniques in X-ray timing.

It is important to note that Fourier techniques are by no méhea only tools employed in timing analysis.
However, they are very commonly used, and often are thargigobint, or at least the comparison point,
for other analyses. Here we shall introduce the Power Sgidaensity (PSD; sometimes also referred to as
Power Density Spectra, PDS).

A Fourier Transform is a decomposition of a signal into a sdfnaamplex exponential (i.e., sinusoidal)
components, with each component having a complex ampliéndea complex phase. When dealing with
discretely sampled, uniformly binned lightcurves, onesube discrete Fourier transform. Specifically, if
x, are the lightcurve amplitudes measured at timegubdivided intoN uniform steps of time bins with
width 1/T'), then the discrete Fourier transform is given by
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The frequencyny = vy = N/2T is referred to as the Nyquist frequency, and is the highesfutency
one can explore in a discretely sampled lightcurve. (Plesfge to the above cited lecture by Michiel van
der Kilis for much more detail on this issue.)

The Fourier transform can be inverted:
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If the signalx; is real (i.e., like all the signals we deal with in X-ray tingianalysis!), then for the Fourier
transform of equation (1), the imaginary terms-gtand-; cancel out in the sum, leaving us with terms of
the form:

2|a;| cos(wjty — ¢5) - (5)

Since real signals are what we deal with in X-ray astronomg, wsually only deals with the positive Fourier
frequenciesw;, and refers t@|a;| as the Fourier amplitude, arg as the Fourier phase.

In this exercise, we will only be dealing with the squared fi@uamplitudesx aja; = |aj|2. The run of
these amplitudes vs. frequency is what is referred to as®i& R is a measure of the “power” of a signal
over a given range of frequencies. Specifically, the PSD isasure of the fractional variability over a
given range of frequencies. Often, you will see the PSD ittsuoii (RM S)? /Hz, i.e., (root mean square
variability)?/unit frequency. In this formulation,

( / df PSD( f))l/2 , (6)

is the fractional variability of a signal over that frequgmange.

This leads to a final point: PSD normalization conventions.thie above formulas, the negative sign in
front of the imaginary unit could have been associated wittee the “forward” (time to frequency) or
“reverse” (frequency to time) transform. Likewise, theme@nvolving N can be associated with one or the
other transform, or split between both. And sometimes faad2 or+/2 are introduced. That is, different
software packages will define the transform pairs diffdye(tiut they will always come in pairs that are
self-consistent, in that applying the reverse transforer diie forward transform will get you back to where
you started, modulo numerical roundoff errors). Always aeetul to know the conventions of the software
package that you are using!

In X-ray astronomy you will usually see one of two conventi@mployed, which can be distinguished by
the properties of the PSD of Poisson noise. Poisson noiséeised to as “white noise” since the expectation
for its PSD is that it is, on average, flat (i.e., constant) &snation of Fourier frequency. Astrophysical
PSD are normalized such that the Poisson noise level is @& be 2 (often referred to as the “Leahy
normalization”), or such that the Poisson noise is expeteble 2/count rate (referred to as “RMS” or
“Belloni-Hasinger” or “Miyamoto” normalization). For thi®rmer, the amplitude of an astrophysical signal
scales with count rate (but the noise level is constant),redwefor the latter, the astrophysical signal is
independent of count rate (but the noise level increasds d@treasing count rate). In the exercise that
follows, we will use the Leahy normalization.

Practice Creating Your Own Signals

The following presumes you are usih@l S, and have downloaded ti8 TAR package from:
http://space. nit.edu/cxc/anal ysi s/ SI TAR/

SI TAR will be used for two purposes: create a PSD from a lightcuara] then register this PSD as a
fittable dataset. Any system wherein one can: read a FITSpgddprm an FFT, and then register the
resulting PSD as a fittable dataset would suffice. The “vatlteed” inSI TARIs that it properly takes care
of the normalization issues and gets the statistics comeate explain below. Reproducing the functionality
that we will use here is not terribly difficult in a number ohet systems. We leave it as an exercise for the
ambitious student!

First, loadSI TAR from the same directory in which you are runningl S.
isis>require(‘‘sitar’’);



Now create a linear grid af024 = 16 time points ranging from 0-16 sec.
isis> (tlo,thi) = linear grid(0, 16, 1024*16);
isis>tavg = (tlo+thi)/2;
Create a constant+sinusoidal signal with a period of 1/280 s
i si s> period=0.01;
i si s> onega=2+PI/ peri od;
i si s> | c=10+si n(onega*t avg) ;
Plot these data over a subsection of the lightcurve.
i sis> xrange(0,0.5); xlabel (‘*Tinme'’); ylabel (‘" Arplitude’’);
isis> plot(tavg,lc);
A real signal will have noise associated with it, so let’s adche to the lightcurve. Specifically, we will add
Gaussian noise with zero mean and unit variance.

isis>1lc += grand(1024x16);

isis> plot(tavg,lc);
Now useSI TARto create araverage PSD,psd, at frequencie$ , where the length of the individual PSD
making up the average is 1024*16 (i.e., the whole lightcyrand where the uniform time bin size is 1/1024.
Plot the results!

i sis> (f,psd, navg, cts) = sitar_avg psd(lc, 1024+x16,1./1024,tavq);

i si s> xrange(); % Reset the xrange of the data to autoscal e

i si s> xlog; vylog; % Use | ogarithm c axes

i si s> x|l abel (** Frequency (Hz)' ' );

i sis>ylabel (' PSD ");

isis> plot(f, psd);
Herenavg is the number of lightcurve segments used in the average R&B, (1, since we created a PSD
of the same length as the input lightcurve), & is the average counts per segment (here, total counts).
Note that her we have not used proper Poisson statisticse stoauldn’t worry too much about the overall
normalizations at this point.

Why does one usually average the PSD from multiple lightewseggments? One often assumes that real
astrophysical signals represestchastic processes (i.e., the lightcurve is not deterministic, but has well-
defined statistical properties). In this case, we expedighécurve to have a well-defined average PSD, but
a standard deviation equal to the average. We improve ounadst of the mean PSD by averaging many
lightcurve segments and/or binning over adjacent frequdmas. Although averaging gives us a better
estimate of the mean PSD, we sacrifice knowledge of the loguéecy behavior (shorter segments means
a higher minimum frequency for any given segment), and haveetcareful not to average over so many
frequency bins as to hide any interesting behavior. (Orenafises a logarithmic binning approach where
the number of frequency bins averaged over increases asam¥etg higher frequency. Remember, the
frequency bins are uniformly spaced with resolutiori 6f".)

The lightcurves created abode not represent a stochastic process; therefore, we didn’t batheraging
over multiple lightcurve segments. Averaging, howevell wwiprove the estimates of the noise level. Try
that now by using shorter data segments, and plot the results

i sis> (f,psd, navg, cts) = sitar_avg psd(lc, 1024, 1./1024,tavg);

i sis> plot(f,psd);
Repeat the exercise, but increase the amplitude of the igaussise component. How does the signal
change? Try two sinusoids at different frequencies. Addselshifts to the sinusoids, and compare the
power spectra to what you obtained previously.



Power Spectra of Astrophysical Sources

| have placed on a web site a set of lightcurves from an RXTEmfasion of a neutron star source. The
gzipped tar file can be found at:

http://space. mt. edu/ home/ mmowak/ dat a/ events.tar. gz

The file unpacks to files namex/ent s_18_39_*. | ¢, each of which contain counts vs. time. Start with
the fileevent s 18 39 a. | c. Read the time and counts from this file.

isis> (t,c) = fitsreadcounts(’'‘events1839a.lc’’',’’time’’, "counts’’);

What is the width of the time bins in this lightcurve? Whattgstotal length? What is the range of frequen-
cies that you can explore with the PSD? Try plotting thistidginve, and look at various short segments.

Create a PSD from this lightcurve. (Suggestion: FFTs temdridastest for lightcurves whose lengths are a
power of 2. In fact, the RXTE clock was specifically designetave its fundamental clock ticks be in units
of a power of 2 times a second, e.9;;' sec.) Where is the noise level? Are there any other intexesti
features present?

Let's assume that you have assigned the outpuss ofar _avg_psd to variables , psd, navg, andct s
as before. We can further bin the PSD by averaging over fregyukins.

i sis> (aflo,afhi,apsd,nf) = sitarlbin_psd(f, psd, 0.01);
will average over bin widthé\ f /f = 0.01. Each new frequency bin is averaged fraifn frequency bins,

while the original PSD was created framav g lightcurve segments. If the PSD error goes as the PSD value
divided by the square root of the number of averages, whaei®ED error for a given frequency bin?

Fit a model to this PSD in the frequency range 500—1500 Hz. dlthi, we must first “register” the PSD
data: frequency bin values, PSD values, and PSD error 8BiiSAR contains a function to do this inSI S,
which we apply as follows.

isis> MnimmsStat Err = 1. e-30;

isis>id = sitar_definepsd(aflo,afhi,apsd, apsd/sqrt(navg*nf));
The first command above resets tH&l S minimum error from the usual value of 1 (often appropriateewh
using Poisson statistics and counts/bin as the data) to & tower value. Here the error on the PSD value
can be as low a$0~3. The second command assigns the frequencies, PSD, and R8® as a dataset,
with the frequency units of Hz being treated like energy suoit keV. Although programs liké SI S and
Sher pa are in fact agnostic about the units of fittable datasetsyrafimeir built in models (inherited from
legacyXSPEC models) presume bin units of keV. If one wants to use theseclemodels, it is convenient
to make the implicit transformation of 1 Hz (Fourier frequgmot frequency of light!) = 1 keV.

Restrict the “energy” range to 500-1500 Hz (keV), and cradiEfunction that is a constant plus a gaussian,
and then fit the data. Plot your results.

i si s> xnoticeen(id,500, 1500); % Restrict the energy range
isis> fit_fun('‘constant+gaussian’’);

i sis> list_par; % Look at the nodel default paraneters
i sis> set_par(1,2,0,1,3); % Set paraneters to reasonable starting
i si s> % val ues, with sensible limts on the ranges.
i si s> % The 0 neans free (not frozen) paraneter.
i sis>setpar('‘constx’’,2,0,1,3); % Alternative to the above -
i si s> % use the paranmeter’s nane; wild cards K

i si s> % Next choose sensi bl e gaussi an paraneters (not shown)



isis> fit_counts;
isis>xlin; ylin; xrange(500,1500); yrange(1l.9,2.2);
i si s> rplot_counts(id);

You'll notice that in the above plot, the x-axis says “Enefggv]” and that the y-axis says “Counts/bin”.
Again, we are making the association of 1 Hz=1keV in ordereable to use th&SPEC legacy models.

(Custom plotting routines are available that will produdegemlots, and replace the axis labels with more
reasonable defaults.)

What is the frequency of the gaussian feature? What is itshwidcomparison to this frequency? The
frequency divided by the width is called tidg-value, with largeQ)-values indicating combinations of long
persistence times, and stable frequency and phases, otidatog) feature. Is this a higty-value feature?
A more realistic profile to fit to such a feature would be a Léz&m function that was properly averaged
over the width of the individual frequency bins. Such a fimtis not hired to write (i.e., a simple scripted
fit function would suffice). We leave it as an exercise for thader to write and fit such a function!

You can determine error bars for the parameters usingdmé command. E.g.,
i sis> conf(1);
will give the 90% confidence limit for theonst ant component. Is this constant statistically different than

the expected value of 2? Note that deadtime in the deteatoreduce the expected PSD of Poisson noise
below 2. Is there evidence for detector deadtime here? Rmeéiror bars for the gaussian feature as well.

Look at the other data files. Are the amplitude and frequeridhe feature persistent? Is it present in
all of the lightcurves? What changes can you note? Is theyeegidence for a harmonic of this feature
(e.g., another feature at twice the frequency). Feel framiobine all of the power spectra from all of the
lightcurves. How would you go about doing that?



