


Reminders

Diffuse Emission = Thermal Emission (Usually)
As T increases => Excite higher 1onization states
—> Higher 1onization states dominated by higher E lines
At CCD resolution, higher T => higher cutoff energies

Bulk of emission from typical hot plasma has E<2 keV
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What We Actually See

Due to spectral resolution abundances difficult to determine
particularly for low temperature components
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Reminders
Thermal Emission # Collisional Ionization Equilibrium (CIE)

Non-Equilibrium Ionization (NEI): which NEI?
- under-1onized plasma: Te>Tpop
- typical of shocks
- ne1, vpshock 1n xspec
- over-1onized plasmas: Te<Tpop
- typical of adiabatically cooled gas
- (there are no such models 1n xspec)




Reminders

Interstellar Absorption:
[=Ioexp(cN(H)) and c < E-8/3)
—> absorption produces bluing
Difficult to observe the Galaxy at E<1 keV

_—
Q
(o

S’

e,
B o
]
oW
L
v
-
&
=
0]
U
E

1.0
Energy (keV)

2011-08



Reminders

If N(H) varies by large amounts over small regions
one can use the anticorrelation to determine Iiocal & Idistant
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Absorption can be
your friend!
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(Partial) Myth

That X-rays much much less absorbed than optical photons -
- It really depends upon the energy!
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Diffuse X-ray Emission in Galaxies

Classic Justifications:
- X-ray Emission traces the most energetic part of the ISM
- Assumed to be produced mostly by SNR
- Mechanical energy “sculpts” the cooler components
- Hot gas contains the newly create metals
- If sufficiently energetic hot gas can escape galactic disk
(through galactic chimneys)
—> extended hot halo = 1nhibits gas infall
—> quenching star formation =>? galaxy evolution
- If even more energetic can escape galaxy
= enriches the IGM and the WHIM
—>? why zero-metal gas does not exist
- Study of low-z systems tells us about high-z systems



Diffuse X-ray Emission in Galaxies

Classic ISM Questions:
What are the main sources of X-ray emission?
How much hot gas 1s there (Mass? or Energy?)

What is the life-history of the hot gas?
Where does 1t go?
How quickly does 1t cool?

Under what conditions does 1t escape?

Questions that we can address:
What are the sources of the X-ray emission?
How much 1s due to hot gas?
What 1s the physical state of the gas?
(Need to know 1n order to calc. Mass and Energy)



/4 keV
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What do we see?
- SNR mostly 1n Galactic plane
- Shadows at high Galactic latitude
=> bright emission 1s the Galactic Halo
- The flux 1s not zero 1n the Galactic plane
= significant emission nearby (R<I kpc)
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/4 keV
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Local Hot(?) Bubble

At 1/4 keV, the mean free path ~ 100 pc yet
- we see emuission 1n all directions
—> must be a source of emission nearby
- look at a nearby, dense molecular cloud
- from band ratios and spectral fitting kT~0.09 or T~10° K
(emission almost insignificant at 3/4 keV)
- from T and R~100pc => gas likely 1in thermal equilibrium
—> observed flux as f(direction) o pathlength

(use variation 1n N(H) to seperate local and distant gas)
- region of hot gas ~ region lacking neutral gas



Local Hot(?) Bubble

At 1/4 keV, the mean free path ~ 100 pc yet
—> observed flux as f(direction) o pathlength

(use variation in N(H) to seperate local and distant gas)
- region of hot gas ~ region lacking neutral gas




Local Hot(?) Bubble

Comets were found to emit X-rays! through charge exchange:
H+O"" — H+O"+v
So all neutral material in solar system should emit!
ROSAT experienced a time-variable background (LTESs)
- found to be correlated with the solar wind
- due to interactions of solar wind with
1) ISM flowing through solar system
2) the exosphere
- most of this contamination removed from RASS but...

- some portion remains and incorrectly attributed to LHB
How much of the LHB remains? HESF IR GEOR NeOlE

Comet Hyakutake - C/1996 B2 ROSAT HRI

- about half of previous estimates

C. Lisse, M. Mumma, NASA GSFC
K. Dennerl, J. Schmitt, J. Englhauser, MPE




3/4 keV

| /4 keV
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3/4 keV
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What do we see?
- Superbubbles
- Galactic bulge
- Some shadows 1n Galactic plane
(but not enough to account for absorption of extragalactic
emission due to AGN: the classic “infill problem”)
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In the Galaxy
- generally impossible to determine R to diffuse emission
—> 1mpossible to measure total Mass or Energy
- absorption by Galactic disk
—> see only the solar neighborhood
—> very biased view of the Galaxy
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What S In A Galaxy?

In Nearby Galaxies
- everything at the same distance
- relative locations and sizes obvious, but
- lower spatial resolution => more confusion
= faint sources “fade” into diffuse emission
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What’s 1n a Galaxy?
SNR
Star-formation Regions (bubbles & super bubbles)
Non-localized Diffuse Emission
Unresolved Stars (stellar coronae)
Unresolved X-ray Binaries
Galactic bulges
Galactic halo - thick disk (?)
Galactic halo - spherical (Spitzer Corona)
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Early type spirals correlated with K-band => mass
—> dominated by stellar emission and/or halo
Late-type spirals correlated with FIR/Radio => SFR
—> dominated by star-formation (SNR, SFR, bubbles, etc.)
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What’s 1n a Galaxy?

Early-type Spirals (Sa-Sb)
Bulge dominated
Redder
More massive
Lower star-formation rate

X-rays from stars
—> X-ray dim
(except for bulges)

Late-type Spirals (Sc-Sd)
Disk dominated
Bluer
[Less massive
Higher star-formation rate

X-rays from star-formation
—> X-ray bright

MI17

2011-08



Early vs. Late
Early type (Sab) spiral M31
- bulge dominated
- disk nearly 1nvisible




Early vs. Late

Late type (Scd) spiral M101
- bulge?
- disk emission, strong, traces the FUV (star-formation)




What’s 1n a Late-Type Spiral Galaxy?

The bulk of the emission 1s correlated with the FUV emission
= bulk of emission 1s due to star-formation.

Correlation 1s not linear (as expected!)

Approximately 5% of emission not due to star-formation

—> local and strength suggests due to stars
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What’s 1n a Late-Type Spiral Galaxy?

The bulk of the emission 1s due to star-formation.

But what does that mean?
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What’s 1n a Late-Type Spiral Galaxy?

The bulk of the emission 1s due to star-formation.
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What’s 1n a Late-Type Spiral Galaxy?

The bulk of the emission 1s due to star-formation.

Emission 1s due to SNe (mainly) + stellar winds (few percent)

Most SNe lose their 1dentity
Only ~3% of emission from
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What’s 1n a Late-Type Spiral Galaxy?

The bulk of the emission 1s due to star-formation.

Emission 1s due to SNe (mainly) + stellar winds (few percent)
Most SNe lose their identity within the bubble quickly
Only ~3% of emission from M33 1n 1dentifiable SNR

These regions have very complicated emission
- overionized, underionized, and charge exchange
- the global galaxy spectrum 1s the ) many of these regions
= spectral fitting does not directly produce physical params.



What’s 1n a Late-Type Spiral Galaxy?

These regions have very complicated emission
- overionized, underionized, and charge exchange

- the gl

obal galaxy spectrum 1s the ) many of these regions

—> spectral fitting does not directly produce physical params.

However...

We still
Typica.

1t spectra and derive “T” which then get used, e.g.
| galactic kT=0.25 & 0.7 keV

Typica.
In that
...yet

| cooling times are ~10° yr
time gas should move ~m around the galaxy...
we see sharply defined spiral arms!



What’s 1n a Late-Type Spiral Galaxy?

Typical galactic kT=0.25 & 0.7 keV

Typical cooling times are ~10% yr

In that time gas should move ~m around the galaxy...
yet we see sharply deﬁned spiral arms!
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What’s 1n a Late-Type Spiral Galaxy?

Typical galactic kT=0.25 & 0.7 keV

Typical cooling times are ~10% yr

In that time gas should move ~m around the galaxy...
...yet we see sharply defined spiral arms!

3.0x107°

. 100"-130"

Outside arm,
Ambient P drops
Hot gas expands :
Density drops £ 50
Since emission o n? Q |
—> surface brightness drops
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There may be more hot gas there than we can detect!
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What’s 1n an Early-Type Spiral Galaxy?

Bulge dominated
Radial profile of disk shows X-ray correlated with both
FUYV (star-formation) and K (stellar coronae)
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Where Are All the Haloes?

Virial temperature of MW-like galaxy is ~10° K
Model predictions for luminosities:
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Summary

The bulk of the X-ray emission that we see 1n galaxies:
® 1s only the densest of the hot gas
emissing all of the low density gas (much of the mass?)
® dominated by star-formation in late-type spirals
(SNe that have lost their 1dentity)
® dominated(?) by stellar coronae in early-type spirals
(but very hard to verify)
® 1s not 1n spherical hydrostatic halos
Very difficult to extract physical parameters:
® multiple components along line of sight
® likely out of equilibrium (both ways)
e relatively low spectral resolution (CCDs)
Correlations are beginning to emerge that hint at the physics
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X-ray vs. Optical Analysis
Bandpass set by instrument
Many counts/pixel
—> small background region
Uniform response (flatfield)

Bandpass set by user
Less than one count/pixel

—> large background region
Response spatlally Varlable
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How Much Does RMF Variation Matter?

Relative Responses for ACIS-S3




How Much Does RMF Varlatlon Matter?

Soft hMedium




Background Removal Strategy

Which photons 1n this image are due to the background?
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Backgrounds (What they are)

Non-Cosmic Backgrounds:

Energetic Particles Spatial dist. & energy resp.

“Soft” Protons # photon dist. & resp.
Local Backgrounds:

Scattered Solar X-rays Non-uniform distribution

Solar Wind Charge Exchange Uniform distribution

Cosmic Backgrounds:
Local Hot Bubble
Galactic Halo
Unresolved AGN



Background Removal Strategy

Spectroscopy:
Best Practice:
FIT all components simultaneously,
FIT background and source simultaneously
2nd Best Practice:
Subtract the backgrounds you must &
FIT the rest
Imaging:
Best Practice:
1) build count (not count rate) images for each background
2) subtract all the backgrounds from the image
3) divide the remainder by the response



Backgrounds

Non-Cosmic Backgrounds:
Energetic Particles
- pass through instrument from all directions
- interact directly with the detector
—> events can look like X-rays
- interact with material around detector
—> X-ray emission
- spatially variable (not like photons)
- may be temporally variable
XMM 1s, Chandra not
Coping:
- Missions produce particle background files
images and spectra (depending on mission)
- created by closing filter wheel or observing dark earth
- normalize to observation at high E, =10 keV



Energetic Particles

Relative Flux

Backgrounds

Non-Cosmic Backgrounds:
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Backgrounds

Non-Cosmic Backgrounds

Energetic Particles

1al Distribution:
XMM: features
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Backgrounds

Non-Cosmic Backgrounds:
“Soft” Protons (“Soft Flares”)
- MeV protons focussed by optics onto detectors (oops!)
- Strongly time variable (in strength and spectrum)
- Spectrum often broken or cutoff power law
Coping:
- Filter out times with flares (will reduce noise)
- Fit the remainder
- Apply spectroscopic normalization to “flare map”
and subtract from 1mage



Backgrounds

Non-Cosmic Backgrounds:
“Soft” Protons (“Soft Flares”)
Two XMM light-curves - sometimes flares are not obvious
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Backgrounds

Non-Cosmic Backgrounds:
“Soft” Protons (“Soft Flares”)
Spatial distribution 1s flatter than that of photons

0.3-0.75_keV 0.75-1.25 keV 1.25-2.0 keV ' 3 MOS1 0.3-2.0 keV
R G R MOS1 2.0-18, keV

MOS2 2.0-12. keV
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Backgrounds

Non-Cosmic Backgrounds:
“Soft” Protons (“Soft Flares”)
Mean spectrum ~ broken power law - but large variation
A “flared” XMM spectrum, a “cleaned’” spectrum, and
their difference (showing spectrum of a set of flares)
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Backgrounds

Local Backgrounds:
Scattered Solar X-rays (from Earth’s atmosphere)
- Only a problem for missions looking close to the earth
(ROSAT, Suzaku)
Coping:
- Remove contaminated data

Solar Wind Charge Exchange (SWCX)
- Temporally variable, particularly at Ovir and Ovin
- Compare O-band light curves with higher energy
Coping:
- Give the data to someone who studies SWCX
(Unless the species hit by SWCX aren’t of interest)



Local Backgrounds:

Solar Wind Charge Exchange (SWCX)
Two XMM observations of exactly the same direction:

P 5.0x107°]

Backgrounds
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Backgrounds

Cosmic Backgrounds:
Local Hot Bubble:
- unabsorbed thermal component with kT~0.09 keV
Galactic Halo
- thermal component with kT~0.25 keV +
- (sometimes) thermal component with kT~0.09 keV
- absorbed by total Galactic N(H) along line of sight
Coping:
- Fit simultaneously!
- Do not use “background” or “empty field” spectra or
images below ~1.5 keV'!



Do Not Use Mean Backgrounds

Cosmic Backgrounds:
The cosmic background varies greatly with direction.
A “mean” cosmic background 1s rarely correct.

2.5x1072
2.0x<107°

1.5x1073
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5.0x10°%F
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Backgrounds

Cosmic Backgrounds:
Unresolved AGN
- power law spectrum with I'=1.46 absorbed by Gal.N(H)
- normalization depends on point-source detection limit
(but easily calculated using, e.g., Cappelluti et al 2009)
Coping:
Fit simultaneously, allow norm. to vary (within reason)



Background Example
An example of all of the components in an XMM spectrum of
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Backgrounds (Example)

The Analysis of M101 -
Where to get the background for a Chandra analysis?
Since response 1n background region # in source region
- not restricted to same detector or even same telescope

Chandra image for which
we need background




Backgrounds (Example)

The Analysis of M101 -
Where to get the background for a Chandra analysis?
S1 chip can also be used to get background for S3

2011-08




Backgrounds (Example)

The Analysis of M101 -
Fitting the backgrounds - different instruments consistent

ACI5—83

ACIS-S1
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Use these fit parameters to create background images.
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Backgrounds (Example)

The Analysis of M101 -
Then use scaled background 1n fit of the source spectra
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Backgrounds ()

Non-Cosmic Backgrounds:
Energetic Particles
“Soft” Protons

Local Backgrounds:
Scattered Solar X-rays
Solar Wind Charge Exchange

Cosmic Backgrounds:
Local Hot Bubble
Galactic Halo
Unresolved AGN



Analysis of Diffuse Emission

Classical optical photometry:
Narrow band-pass 1s set by the instrument
User sets object & background apertures
Background statistically well determined

F=(Co-Cs*Ao/Ag)*R




Analysis of Diffuse Emission

X-ray photometry of small sources:
Broad band-pass 1s set (somewhat) by the user
User sets source & background apertures
Background NOT statistically Well determmed




Analysis of Diffuse Emission

X-ray photometry & spectroscopy of extended sources

Bac]
Res;

cground count-rate low => need large area

ponse varies with position and energy => R(Pos,E)

—> objects with same flux, same position,

but different spectra produce different count rates
—> R=R(Pos,Spectrum)=R(P,S)

F=(Co-Cr(Ao/Ap)(R(P=0,S=B)/R(P=B,S=B)))/R(P=0,5=0)
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