

Yet Another X-ray Xtractor

Tom Aldcroft, SAO/CXC http://cxc.harvard.edu/contrib/yaxx

Yaxx is a Perl script that facilitates batch spectral processing of X-ray data using Perl open source tools and commonly available astronomical software (CIAO/Sherpa, SAS, HEAsoft). It includes automated spectral extraction, fitting, and report generation. The primary emphasis is on having a simple tool that can be run without requiring an extensive learning curve. However, for those with the motivation, *yaxx* is highly configurable and can be customized to support complex analysis. In particular the *yaxx* processing flow is fully configurable, easily allowing automation of data reduction steps. *Yaxx* includes default processing threads and output templates for *Chandra* and *XMM* spectral analysis.

Key Features:

- Uses Perl and CIAO/Sherpa, plus other packages (e.g. SAS and FTOOLS) as needed
- Full reference manual, quick-start guide, and installation guide
- Easily customized via configuration, template files
- Takes advantage of the powerful *Sherpa* and *S-lang* scripting capability
- Uses file dependencies in each processing step for selective reprocessing
- Processing summaries created in HTML and postscript formats
- Files and *Sherpa* fit script ready for interactive analysis
- Generates convenient FITS tables of all spectral fitting results
- Facility to easily do Monte-Carlo simulations
- Completely free, as in beer and only open source software
- Supported on Linux and Solaris platforms, with Mac OS X support in work

Yaxx is Simple

			-	Yaxx Repo	rt - Mozilla Fire	efox				
File Edit Vi	ew Go E	300kmarks	Tools	Help					ille taldcroft • 😳	
	1									
	78 									
Yaxx repo	rt for O	bsld:310	2 Src:	1						
	2102				~	1				
Counts	2286.0		1.	Q1250+5	68	The a at	ral fit r		ators on	ط اما
Exposure	14006		/	1 1		spect	rai iit p	baram	eters an	a pi
RA	193.109	9	*	(the second sec	1					
CCD	ACIS-S	3		$\left(\bigcirc \right)$	5					
Source	1									
Redshift	0.32			1.4	1. 1					
Object	Q1250+	568	1.	Acres	· /.					
				2.	/					
				101010141	0.00	72 1 8727		٦		
	gai nH	gamma	ref	ampl	abs nH	Redshift	stat		1 1 1	
	10 ²²	9 1 1 1 1 1	20-0006	10-5	10 ²²		(DOF)			
pl	0.012	1.85+0.07	1	19.27 ^{+0.74}			118.9 (100)			
nl ahe	0.012	1.85 +0.07	1	19.27 +0.75	0.000 +0.012	0.320	118.9 (99)			
	- 0.012	1.90	1	19.53 +0.74	0.000 +0.018	0.320	120.7 (100)			
pl_abs	5 0.012	and a set of	-	-0.67	-0.000		11011 (100)			
pl_fix_ab	s 0.012				800-4 100 LC					
pi_abs	- 0.013	1.90	1	19.53 ^{+0.74} -0.67	0.000 +0.018	0.320	120.7 (100)			

Fit 17 sources with default models

Edit configuration file to set input data directory
input_dir = /data/chandra/obs%d # Input data dirs

Create object list file with all sources Run yaxx View fit results

See	T	5449.1	27001	B2 0730+313	
836	1	1349.9	25345	PKS B1345+125	
866	1	15057.4	27358	Q1127-145	
Create	d by ya	x. Copyright	(C) 2006 l	y the Smithsonian Astrophysical Obser	vator
Create	d by yax	xx. Copyright	(C) 2006 l	y the Smithsonian Astrophysical Obser	vator

Proce	ssing history			
File	Date	Size		
log	Fri Mar 31 10:32:17 2006	17675		Processing logs
log.2	Fri Mar 31 10:14:53 2006	284	7	
log.1	Fri Mar 31 10:14:07 2006	133		

Yaxx is not Simple

Processing threads

- Configuration and processing flow required for each type of data analysis is encapsulated in a processing thread
- Yaxx currently has standard threads for *Chandra* and *XMM*
- A derivative of the *Chandra* thread is used for ChaMP processing
- A major survey project could develop a standard thread to provide a unified configuration for outputs, models etc for individual studies within the project
- Detailed data processing is defined entirely within the thread configuration file, making it possible to tweak existing threads or define completely new threads (possibly having nothing to do with spectral fitting!)

Configuration

- Most behavior of yaxx is controlled by a hierarchical set of configuration files, from System level (global options not changed after installation) down to options specific to a single source.
- Spectral fitting models are completely configurable
- Choice of fit model(s) determined by yaxx for each source based on user-supplied criteria
- Output report format specified by HTML and LaTeX templates

Example: Calculate unabsorbed luminosity

• Using the powerful combination of the Sherpa, S-lang,

Real world applications of yaxx

- ChaMP (Silverman et al. 2005 ApJ 618 123; Green et al. Extragalactic Surveys poster)
- ANCHORS: An archive of Chandra observations of regions of star formation (http://cxc.harvard.edu/ANCHORS)
- "Evolution of the X-ray Emission of Radio-Quiet Quasars" (Kelly et al. 2006, ApJ Letters accepted)
- "X-ray Properties of the Gigahertz-peaked and Compact Steep Spectrum Sources" (Siemiginowska et al. *in prep*)

Download

Generate GTI table to filter out times of high rates
<process_step>

and the yaxx macro language, one can do complex manipulations and capture the results in the output data

• The following is placed in the *Sherpa* fit template:

Calculate the 2-8 keV (rest-frame) unabsorbed luminosity e2_rest = 2.0 / (1+%VALUE{redshift}%) e8_rest = 8.0 / (1+%VALUE{redshift}%) unabs_flux2_8_rest = get_eflux(1, [e2_rest, e8_rest], "pow1") flux_cmd = "flux_to_luminosity.pl -redshift %VALUE{redshift}% -flux ' + string(unabs_flux2_8_rest.value) fp = popen(flux_cmd, "r") lines = fgetslines(fp) Grab results Run an external perl script ()=pclose(fp) unabs_lumin_2_8_rest = lines[0] fits_update_key(fp, "LU20_80R", unabs_lumin_2_8_rest, "Luminosity") Save as MDL file header keyword Further information and source download at http://cxc.harvard.edu/contrib/yaxx

Acknowledgements

• Yaxx has been developed with support from NASA grant NAS8-03060 and CXC archival research grant AR2-3009X