Basic Lightcurves
CIAO 4.16 Science Threads
Overview
Synopsis:
A simple lightcurve from a point source in ACIS data can be used to get an idea of the variability of the source or to look for background flares that should be filtered out. The process for HRC is similar, but requires accounting for the Dead Time Factor (DTF). The CIAO tool dmextract is used in this thread as it accurately applies good time interval (GTI) information when creating lightcurves.
Purpose:
To create lightcurves for use in a variety of analyses.
Related Links:
- Why topic: Timing Analysis with Lightcurves: caveats that one should be aware of when doing timing analysis on Chandra data.
- Thread on using glvary and dither_region to look for variable sources.
Last Update: 25 Jan 2022 - Reviewed for CIAO 4.14. Updated for Repro-5/CALDB 4.9.6
Contents
- Get Started
- ACIS Lightcurves
- HRC Lightcurves
- Caveats
- Parameter files:
- History
- Images
Get Started
Download the sample data: 953 (ACIS-I, 47 Tuc); 461 (HRC-I, 3C 273)
unix% download_chandra_obsid 953,461 evt2,dtf
ACIS Lightcurves
The most common lightcurve is made from a point source observed with the ACIS detector. This may be done to get an idea of the variability of the source or to help identify periods of high background.
To begin, we define the regions - two source and one background - which will be used to create the lightcurves. For instructions on how to create regions in ds9, see the Using CIAO Region Files thread. The regions used in this example are shown in Figure 1.
[Version: full-size]
Figure 1: Image of 47 Tuc with extraction regions
unix% cat src1.reg # Region file format: CIAO version 1.0 circle(4011.0,4026.1,8) unix% cat src2.reg # Region file format: CIAO version 1.0 circle(4034.9,4023.6,8) unix% cat bkg.reg # Region file format: CIAO version 1.0 circle(3875.5,3972,54.5)
Determine which chips are being used
dmextract uses a ccd_id filter on the input file ensure that the proper GTIs are used. Use dmstat to determine the correct chip:
unix% punlearn dmstat unix% dmstat "acisf00953N005_evt2.fits[sky=region(src1.reg)][cols ccd_id]" ccd_id min: 3 @: 1 max: 3 @: 1 mean: 3 sigma: 0 sum: 7296 good: 2432 null: 0 unix% dmstat "acisf00953N005_evt2.fits[sky=region(src2.reg)][cols ccd_id]" ccd_id min: 3 @: 1 max: 3 @: 1 mean: 3 sigma: 0 sum: 5850 good: 1950 null: 0 unix% dmstat "acisf00953N005_evt2.fits[sky=region(bkg.reg)][cols ccd_id]" ccd_id min: 3 @: 1 max: 3 @: 1 mean: 3 sigma: 0 sum: 687 good: 229 null: 0
The regions with which we are working are all located on chip 3 (ACIS-I3); see Figure 6.1 of the POG for an illustration of the focal plane)
Create a background-subtracted lightcurve
First we extract a background-subtracted lightcurve for "src2":
unix% punlearn dmextract unix% pset dmextract infile="acisf00953N005_evt2.fits[ccd_id=3,sky=region(src2.reg)][bin time=::2000]" unix% pset dmextract outfile="src2_sub_lc.fits" unix% pset dmextract bkg="acisf00953N005_evt2.fits[ccd_id=3,sky=region(bkg.reg)]" unix% pset dmextract opt="ltc1" unix% dmextract Input event file (acisf00953N005_evt2.fits[ccd_id=3,sky=region(src2.reg)][bin time=::2000]): Enter output file name (src2_sub_lc.fits):
You can check the parameter file that was used with plist dmextract.
The contents of the dmextract output can be shown with dmlist
unix% dmlist src2_sub_lc.fits cols -------------------------------------------------------------------------------- Columns for Table Block LIGHTCURVE -------------------------------------------------------------------------------- ColNo Name Unit Type Range 1 TIME_BIN channel Int4 1:17 S/C TT corresponding to mid-exposure 2 TIME_MIN s Real8 69583184.1139039993: 69616983.4901389927 Minimum Value in Bin 3 TIME s Real8 69583184.1139039993: 69616983.4901389927 S/C TT corresponding to mid-exposure 4 TIME_MAX s Real8 69583184.1139039993: 69616983.4901389927 Maximum Value in Bin 5 COUNTS count Int4 - Counts 6 STAT_ERR count Real8 0:+Inf Statistical error 7 AREA pixel**2 Real8 -Inf:+Inf Area of extraction 8 EXPOSURE s Real8 -Inf:+Inf Time per interval 9 COUNT_RATE count/s Real8 0:+Inf Rate 10 COUNT_RATE_ERR count/s Real8 0:+Inf Rate Error 11 BG_COUNTS count Real8 -Inf:+Inf Background Counts 12 BG_ERR count Real8 -Inf:+Inf Error on Background counts 13 BG_AREA pixel**2 Real8 -Inf:+Inf Background Area of Extraction 14 BG_EXPOSURE s Real8 -Inf:+Inf Exposure time of background file 15 BG_RATE count/s Real8 -Inf:+Inf Background Rate 16 NORM_BG_COUNTS count Real8 -Inf:+Inf Background Counts 17 NORM_BG_ERR count Real8 -Inf:+Inf Error on Background counts 18 NET_COUNTS count Real8 -Inf:+Inf Net Counts 19 NET_ERR count Real8 -Inf:+Inf Error on Net Counts 20 NET_RATE count/s Real8 -Inf:+Inf Net Count Rate 21 ERR_RATE count/s Real8 -Inf:+Inf Error Rate -------------------------------------------------------------------------------- World Coord Transforms for Columns in Table Block LIGHTCURVE -------------------------------------------------------------------------------- ColNo Name 2: DT_MIN = +0 [s] +1.0 * (TIME_MIN -69584184.113904) 3: DT = +0 [s] +1.0 * (TIME -69584184.113904) 4: DT_MAX = +0 [s] +1.0 * (TIME_MAX -69584184.113904)
The output file contains various columns including the time bin boundaries, source and background counts, area, as well as exposure times and net count rates. In addition, the TIME column has a coordinate system attached to it that provides the time relative to the start of the observation, DT.
The lightcurve may be plotted using matplotlib
unix% python >>> from pycrates import read_file >>> import matplotlib.pylab as plt >>> >>> tab = read_file("src2_sub_lc.fits") >>> dt = tab.get_column("dt").values >>> rate = tab.get_column("net_rate").values >>> erate = tab.get_column("err_rate").values >>> >>> plt.errorbar(dt, rate, yerr=erate, marker="o", color="red", mfc="black",mec="black", ecolor="grey") >>> plt.xlabel("$\Delta$ T (sec)") >>> plt.ylabel("Net Count Rate (counts/sec)") >>> plt.title("src2_sub_lc.fits") >>> plt.show()
This lightcurve is shown in Figure 2. There is a significant drop in count rate near 26000 seconds into the observation. This information is used again in the next section.
[Version: full-size]
Figure 2: Background-subtracted lightcurve of src2
Examining the lightcurve with dmlist shows the same results:
unix% % dmlist "src2_sub_lc.fits[cols dt,time,count_rate]" data -------------------------------------------------------------------------------- Data for Table Block LIGHTCURVE -------------------------------------------------------------------------------- ROW DT TIME COUNT_RATE 1 0 69584184.1139039993 0.10108994807374 2 2000.0 69586184.1139039993 0.08507730 3 4000.0 69588184.1139039993 0.0739362250 4 6000.0 69590184.1139039993 0.0840644750 5 8000.0 69592184.1139039993 0.06431438750 6 10000.0 69594184.1139039993 0.058743850 7 12000.0 69596184.1139039993 0.062795150 8 14000.0 69598184.1139039993 0.06532721250 9 16000.0 69600184.1139039993 0.074949050 10 18000.0 69602184.1139039993 0.06634003750 11 20000.0 69604184.1139039993 0.0840644750 12 22000.0 69606184.1139039993 0.0719105750 13 24000.0 69608184.1139039993 0.04000658750 14 26000.0 69610184.1139039993 0.0010128250 15 28000.0 69612184.1139039993 0.050641250 16 30000.0 69614184.1139039993 0.04861560 17 32000.0 69616184.1139039993 0.04089879081378
Looking for variability
It is also valuable to compare the lightcurves of sources in the same field when looking for variation. Here we extract a lightcurve for each of the "src1" and "src2" regions (intentionally including the background counts):
unix% punlearn dmextract unix% dmextract outfile="curve_1.fits" opt="ltc1" \ infile="acisf00953N005_evt2.fits[ccd_id=3,sky=region(src1.reg)][bin time=::2000]" unix% dmextract outfile="curve_2.fits" opt="ltc1" \ infile="acisf00953N005_evt2.fits[ccd_id=3,sky=region(src2.reg)][bin time=::2000]"
The lightcurves can be plotted together:
unix% python >>> from pycrates import read_file >>> import matplotlib.pylab as plt >>> >>> plt.subplots(2,1,sharex="col") >>> plt.subplots_adjust(hspace=0.4) >>> plt.subplot(2,1,2) >>> >>> tab = read_file("curve_1.fits") >>> dt = tab.get_column("dt") >>> rate = tab.get_column("count_rate") >>> erate = tab.get_column("count_rate_err") >>> plt.errorbar(dt.values, rate.values, yerr=erate.values, marker="o", color="red", mfc="black",mec="black", ecolor="grey") >>> plt.xlabel(r"$\Delta$ T (s)") >>> plt.ylabel("Count Rate (count/s)") >>> >>> plt.subplot(2,1,1) >>> tab = read_file("curve_2.fits") >>> dt = tab.get_column("dt") >>> rate = tab.get_column("count_rate") >>> erate = tab.get_column("count_rate_err") >>> plt.errorbar(dt.values, rate.values, yerr=erate.values, marker="o", color="red", mfc="black",mec="black", ecolor="grey") >>> plt.xlabel(r"$\Delta$ T (s)") >>> plt.ylabel("Count Rate (count/s)") >>> plt.title("47 TUC") >>> plt.show()
These commands produce Figure 3.
[Version: full-size]
Figure 3: Comparing the lightcurves
The results can also be examined with dmlist:
unix% dmlist "curve_1.fits[cols time,count_rate]" data ... 13 69608184.1139039993 0.07241698750 14 69610184.1139039993 0.07444263750 15 69612184.1139039993 0.06937851250 16 69614184.1139039993 0.08355806250 17 69616184.1139039993 0.06891210431098 unix% dmlist "curve_2.fits[cols time,count_rate]" data ... 13 69608184.1139039993 0.04000658750 14 69610184.1139039993 0.0010128250 15 69612184.1139039993 0.050641250 16 69614184.1139039993 0.04861560 17 69616184.1139039993 0.04085938928173
Comparing this to the lightcurve data from the previous section proves two things:
-
This is not an instrumental effect, since it shows up in curve_2.fits but not curve_1.fits. An instrumental feature would appear in both sources, as they are close together and on the same chip.
-
This is not a background feature, since it is present in both the subtracted (src2_sub_lc.fits) and unsubtracted (curve_2.fits) lightcurves.
It is highly likely, therefore, that the dip in count rate is an indication of a variable star. In the case of 47 Tuc, this is due to a binary system; see the Chandra Photo Album entry for 47 Tucanae for more information.
High background levels
The technique for identifying periods of high background from a lightcurve - and subsequently filtering them out - is explained in detail in the Filtering Lightcurves thread.
HRC Lightcurves
The proper method of creating an HRC lightcurve requires accounting for the Dead Time Factor (DTF). The DTF describes the detector's deviation from the standard detection efficiency. This time-dependent change is due to the physical effect of an event striking the micro-channel plate The DTF is evaluated roughly every 2 seconds and the data are stored in the "dtf1.fits" file. The average DTF value within the time bin is used by dmextract to correct the exposure time and count rate in the lightcurve. Addition information about dead times can be found in the Computing Average HRC Dead Time Corrections thread.
The source region for this example has been saved in the file hrc_src.reg. Again, for instructions on how to create regions in ds9, see the Using CIAO Region Files thread.
unix% cat hrc_src.reg # Region file format: CIAO version 1.0 circle(16476,16294,19.5) unix% punlearn dmextract unix% pset dmextract infile="hrcf00461N005_evt2.fits[sky=region(hrc_src.reg)][bin time=64938947.367:64959159.548:1000]" unix% pset dmextract outfile=hrc_lc.fits unix% pset dmextract opt=ltc1 unix% pset dmextract exp=hrcf00461_001N005_dtf1.fits unix% dmextract Input event file (hrcf00461N005_evt2.fits[sky=region(hrc_src.reg)][bin time=64938947.367:64959159.548:1000]): Enter output file name (hrc_lc.fits):
You can check the parameter file that was used with plist dmextract.
Plotting the lightcurve:
unix% python >>> from pycrates import read_file >>> import matplotlib.pylab as plt >>> >>> plt.subplots(2,1,sharex="col") >>> plt.subplots_adjust(hspace=0.4) >>> >>> plt.subplot(2,1,1) >>> tab = read_file("hrc_lc.fits") >>> dt = tab.get_column("dt") >>> rate = tab.get_column("count_rate") >>> erate = tab.get_column("count_rate_err") >>> plt.errorbar(dt.values, rate.values, yerr=erate.values, marker="o", color="red", mfc="black",mec="black", ecolor="grey") >>> plt.xlabel(r"$\Delta$ T (s)") >>> plt.ylabel("Count rate (count/s)") >>> plt.title("3C 273") >>> >>> plt.subplot(2,1,2) >>> ee = tab.get_column("EXPOSURE") >>> plt.plot(dt.values, ee.values, marker="o", color="red", mfc="black",mec="black") >>> plt.xlabel(r"$\Delta$ T (s)") >>> plt.ylabel("Exposure Time (s)") >>> plt.show()
creates Figure 4.
[Version: full-size]
Figure 4: HRC lightcurve
Examine the lightcurve with dmlist:
unix% dmlist "hrc_lc.fits[cols time,count_rate]" data -------------------------------------------------------------------------------- Data for Table Block LIGHTCURVE -------------------------------------------------------------------------------- ROW TIME COUNT_RATE 1 64939447.3669999987 11.0732902274 2 64940447.3669999987 11.1508118948 3 64941447.3669999987 11.0442979298 4 64942447.3669999987 10.8239338975 5 64943447.3669999987 11.0010478186 6 64944447.3669999987 10.8625693020 7 64945447.3669999987 11.1579373574 8 64946447.3669999987 11.0144558786 9 64947447.3669999987 11.0962446993 10 64948447.3669999987 11.0444782872 11 64949447.3669999987 10.8780703573 12 64950447.3669999987 10.8946114585 13 64951447.3669999987 11.0979602670 14 64952447.3669999987 10.9051273434 15 64953447.3669999987 11.0032931023 16 64954447.3669999987 10.9659395796 17 64955447.3669999987 11.1047841342 18 64956447.3669999987 10.9752825787 19 64957447.3669999987 11.2070096507 20 64958447.3669999987 11.1219813983 21 64959447.3669999987 51.5457065863
Caveats
There are a number of subtleties that it is important to be aware of when using lightcurves for timing analysis. These issues are described in the Timing Analysis with Lightcurves why topic; please read that document before continuing with the analysis.
Parameters for /home/username/cxcds_param/dmextract.par #-------------------------------------------------------------------- # # DMEXTRACT -- extract columns or counts from an event list # #-------------------------------------------------------------------- infile = acisf00953N005_evt2.fits[ccd_id=3,sky=region(src2.reg)][bin time=::2000] Input event file outfile = src2_sub_lc.fits Enter output file name (bkg = acisf00953N005_evt2.fits[ccd_id=3,sky=region(bkg.reg)]) Background region file or fixed background (counts/pixel/s) subtraction (error = gaussian) Method for error determination(poisson|gaussian|<variance file>) (bkgerror = gaussian) Method for background error determination(poisson|gaussian|<variance file>) (bkgnorm = 1.0) Background normalization (exp = ) Exposure map image file (bkgexp = ) Background exposure map image file (sys_err = 0) Fixed systematic error value for SYS_ERR keyword (opt = ltc1) Output file type: pha1 (defaults = ${ASCDS_CALIB}/cxo.mdb -> /soft/ciao/data/cxo.mdb) Instrument defaults file (wmap = ) WMAP filter/binning (e.g. det=8 or default) (clobber = no) OK to overwrite existing output file(s)? (verbose = 0) Verbosity level (mode = ql)
Parameters for /home/username/cxcds_param/dmextract.par #-------------------------------------------------------------------- # # DMEXTRACT -- extract columns or counts from an event list # #-------------------------------------------------------------------- infile = hrcf00461N005_evt2.fits[sky=region(hrc_src.reg)][bin time=64938947.367:64959159.548:1000] Input event file outfile = hrc_lc.fits Enter output file name (bkg = ) Background region file or fixed background (counts/pixel/s) subtraction (error = gaussian) Method for error determination(poisson|gaussian|<variance file>) (bkgerror = gaussian) Method for background error determination(poisson|gaussian|<variance file>) (bkgnorm = 1.0) Background normalization (exp = hrcf00461_001N005_dtf1.fits) Exposure map image file (bkgexp = ) Background exposure map image file (sys_err = 0) Fixed systematic error value for SYS_ERR keyword (opt = ltc1) Output file type (defaults = ${ASCDS_CALIB}/cxo.mdb -> /soft/ciao/data/cxo.mdb) Instrument defaults file (wmap = ) WMAP filter/binning (e.g. det=8 or default) (clobber = no) OK to overwrite existing output file(s)? (verbose = 0) Verbosity level (mode = ql)
History
03 Jan 2005 | reviewed for CIAO 3.2: no changes |
21 Dec 2005 | updated for CIAO 3.3: default value of dmextract error and bkgerror parameters is "gaussian"; dmextract can now accept a DTF file in the exp parameter, which simplifies the process of creating HRC Lightcurves |
01 Dec 2006 | updated for CIAO 3.4: CHIPS version |
23 Jan 2008 | updated for CIAO 4.0: updated ChIPS syntax; lightcurve tool no longer in CIAO; removed "Tool: dmextract vs. lightcurve" section; filenames, screen output, and region files updated for reprocessed data (version N003 event file for 953) |
25 Jun 2008 | updated image display to place figures inline with text |
12 Jan 2009 | updated for CIAO 4.1: provided both Python and S-lang syntax for ChIPS |
05 Feb 2010 | updated for CIAO 4.2: ChIPS version; ObsID 461 file version and corresponding change to screen output |
13 Jan 2011 | reviewed for CIAO 4.3: no changes |
11 Jan 2012 | reviewed for CIAO 4.4: minor change in HRC lightcurve due to bug fix in dmextract (applying DTF file) |
03 Dec 2012 | Review for CIAO 4.5 ; added see also to glvary & dither_region thread. |
03 Dec 2013 | Review for CIAO 4.6. Added note about early data. Minor edits. |
18 Dec 2014 | Reviewed for CIAO 4.7; no changes. |
17 Jul 2017 | Updated figures to plot delta-T. Added additional links to dead-time thread. General cleanup. |
02 Apr 2019 | Update to use matplotlib to plot. |
25 Jan 2022 | Reviewed for CIAO 4.14. Updated for Repro-5/CALDB 4.9.6 |