This page is for the obsolete Sherpa 4.16 release. Please see the Sherpa home page for the latest release.
How do I create and use XSPEC convolution models?
XSPEC convolution models are applied to one or more other model components, which means that their syntax is different to other models (you have to be able to tell the convolution model what model, or models, it should apply to). This is done by function application, as described below.
As an example, the XSPEC xsgsmooth convolution model is used to apply energy-dependent smoothing to a model. For this example we shall create two lines (l1 and l2) which we will then smooth. First the lines:
sherpa> l1 = create_model_component("xsgaussian", "l1") sherpa> l2 = create_model_component("xsgaussian", "l2") sherpa> l1.linee = 3 sherpa> l2.linee = 6 sherpa> mdl = l1 + l2 sherpa> print(mdl) (xsgaussian.l1 + xsgaussian.l2) Param Type Value Min Max Units ----- ---- ----- --- --- ----- l1.LineE thawed 3 0 1e+06 keV l1.Sigma thawed 0.1 0 10 keV l1.norm thawed 1 0 1e+24 l2.LineE thawed 6 0 1e+06 keV l2.Sigma thawed 0.1 0 10 keV l2.norm thawed 1 0 1e+24
Now the smoothing model:
sherpa> gsm = create_model_component("xsgsmooth", "gsm") sherpa> gsm.index = 1 sherpa> print(gsm) xsgsmooth.gsm Param Type Value Min Max Units ----- ---- ----- --- --- ----- gsm.SigAt6keV thawed 1 0 10 keV gsm.Index frozen 1 -1 1
We then "apply" the convolution to the model to be convolved using function application, which creates a new model:
sherpa> convolved = gsm(mdl) sherpa> print(convolved) xsgsmooth.gsm((xsgaussian.l1 + xsgaussian.l2)) Param Type Value Min Max Units ----- ---- ----- --- --- ----- gsm.SigAt6keV thawed 1 0 10 keV gsm.Index frozen 1 -1 1 l1.LineE thawed 3 0 1e+06 keV l1.Sigma thawed 0.1 0 10 keV l1.norm thawed 1 0 1e+24 l2.LineE thawed 6 0 1e+06 keV l2.Sigma thawed 0.1 0 10 keV l2.norm thawed 1 0 1e+24
We can then use this new model in a set_source call, or evaluate it directly to create Figure 1:
sherpa> egrid = np.arange(0.1, 10, 0.01) sherpa> elo = egrid[:-1] sherpa> ehi = egrid[1:] sherpa> emid = (elo + ehi) / 2 sherpa> yorig = mdl(elo, ehi) sherpa> yconv = convolved(elo, ehi) sherpa> plt.plot(emid, yorig, label='Original') sherpa> plt.plot(emid, yconv, label='Smoothed') sherpa> plt.legend() sherpa> plt.xlabel('Energy (keV)') sherpa> plt.ylabel('Photon/cm$^2$/s')
Energy-dependent smoothing
We can check that the convolution has not significantly altered the source signal (there are always edge effects and numerical issues to be aware of):
sherpa> print(f"Original total: {yorig.sum()}") Original total: 2.0 sherpa> print(f"Convolved total: {yconv.sum()}") Convolved total: 1.9999591588322894
Convolved models can be combined with other models, so it would be valid to say
sherpa> set_source(xsphabs.gal * (xsgmooth.gsm(xsgaussian.line) + xsapec.src))