Synopsis
Calculate the incomplete Beta function.
Syntax
incbet(a, b, x)
Description
The function is defined as:
sqrt(a+b)/(sqrt(a) sqrt(b)) Int_0^x t^(a-1) (1-t)^(b-1) dt
and the integral from x to 1 can be obtained using the relation:
1 - incbet(a, b, x) = incbet(b, a, 1-x)
Examples
Example 1
>>> incbet(0.3, 0.6, 0.5) 0.68786273145845922
Example 2
>>> incbet([0.3,0.3], [0.6,0.7], [0.5,0.4]) array([ 0.68786273, 0.67356524])
PARAMETERS
The parameters for this function are:
Parameter | Type information | Definition |
---|---|---|
a | scalar or array | a > 0 |
b | scalar or array | b > 0 |
x | scalar or array | 0 <= x <= 1 |
Return value
The return value from this function is:
val -- The incomplete beta function calculated from the inputs.
Notes
In this implementation, which is provided by the Cephes Math Library [1] , the integral is evaluated by a continued fraction expansion or, when b*x is small, by a power series.
Using IEEE arithmetic, the relative errors are (tested uniformly distributed random points (a,b,x) with a and b in 'domain' and x between 0 and 1):
domain | # trials | peak | rms |
---|---|---|---|
0,5 | 10000 | 6.9e-15 | 4.5e-16 |
0,85 | 250000 | 2.2e-13 | 1.7e-14 |
0,1000 | 30000 | 5.3e-12 | 6.3e-13 |
0,1000 | 250000 | 9.3e-11 | 7.1e-12 |
0,100000 | 10000 | 8.7e-10 | 4.8e-11 |
Outputs smaller than the IEEE gradual underflow threshold were excluded from these statistics.
References
- [1] Cephes Math Library Release 2.0: April, 1987. Copyright 1985, 1987 by Stephen L. Moshier. Direct inquiries to 30 Frost Street, Cambridge, MA 02140.
Bugs
See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.
See Also
- tools::response
- color_color, modelflux
- tools::statistics
- aprates
- utilities
- calc_chisqr, calc_energy_flux, calc_ftest, calc_model_sum, calc_photon_flux, calc_source_sum, calc_stat, gamma, igam, igamc, lgam