Last modified: December 2024

URL: https://cxc.cfa.harvard.edu/sherpa/ahelp/set_quality.html
AHELP for CIAO 4.17 Sherpa

set_quality

Context: data

Synopsis

Apply a set of quality flags to a PHA data set.

Syntax

set_quality(id, val=None, bkg_id=None)

Description

A quality value of 0 indicates a good channel, otherwise (values >=1) the channel is considered bad and can be excluded using the `ignore_bad` function, as discussed in the OGIP standard.


Examples

Example 1

Copy the quality array from data set 2 into the default data set, and then ensure that any 'bad' channels are ignored:

>>> qual = get_data(2).quality
>>> set_quality(qual)
>>> ignore_bad()

Example 2

Copy the quality array from data set "src1" to the source and background data sets of "src2":

>>> qual = get_data("src1").quality
>>> set_quality("src2", qual)
>>> set_quality("src2", qual, bkg_id=1)

PARAMETERS

The parameters for this function are:

Parameter Type information Definition
id int or str, optional The identifier for the data set to use. If not given then the default identifier is used, as returned by `get_default_id` .
val array of int This must be an array of quality values of the same length as the data array.
bkg_id int, str, or None, optional Set if the quality values should be associated with the background associated with the data set.

Notes

The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the `val` parameter. If given two un-named arguments, then they are interpreted as the `id` and `val` parameters, respectively.

The meaning of the quality column is taken from the OGIP standard, which says that 0 indicates a "good" channel, 1 and 2 are for channels that are identified as "bad" or "dubious" (respectively) by software, 5 indicates a "bad" channel set by the user, and values of 3 or 4 are not used.

References


Bugs

See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.

See Also

confidence
set_conf_opt, set_covar_opt, set_proj_opt
data
copy_data, dataspace1d, dataspace2d, datastack, delete_data, fake, get_axes, get_bkg_chisqr_plot, get_bkg_delchi_plot, get_bkg_fit_plot, get_bkg_model_plot, get_bkg_plot, get_bkg_ratio_plot, get_bkg_resid_plot, get_bkg_source_plot, get_counts, get_data, get_data_contour, get_data_contour_prefs, get_data_image, get_data_plot, get_data_plot_prefs, get_dep, get_dims, get_error, get_quality, get_specresp, get_staterror, get_syserror, group, group_adapt, group_adapt_snr, group_bins, group_counts, group_snr, group_width, load_ascii, load_data, load_grouping, load_quality, set_areascal, set_arf, set_backscal, set_bkg, set_coord, set_counts, set_data, set_dep, set_exposure, set_grouping, set_rmf, set_staterror, set_syserror, ungroup, unpack_ascii, unpack_data
filtering
get_filter, ignore_bad, load_filter, set_filter
info
get_default_id, list_data_ids, list_response_ids
methods
set_iter_method, set_iter_method_opt, set_method, set_method_opt
modeling
clean, get_par, set_bkg_model, set_bkg_source, set_full_model, set_model, set_par, set_pileup_model, set_source
plotting
plot_data, set_xlinear, set_xlog, set_ylinear, set_ylog
saving
save_error, save_filter, save_grouping, save_quality, save_staterror, save_syserror
statistics
set_prior, set_sampler, set_sampler_opt, set_stat
utilities
calc_data_sum, calc_data_sum2d, calc_ftest, calc_kcorr, calc_mlr, calc_model_sum2d, calc_source_sum2d, get_rate, set_analysis, set_default_id
visualization
contour, contour_data, contour_ratio, histogram1d, histogram2d, image_data, image_setregion, rebin