Synopsis
Reading, writing, and changing ASCII and FITS files in Python
Description
The Crates module allows users to read and write ASCII and FITS files in Python, with support for the same features as provided by the CIAO Data Model.
>>> cr = read_file('tbl.dat[energy=500:7000][cols x,y]') >>> x = get_colvals(cr, 'x') >>> y = get_colvals(cr, 'y')
reads in the x and y columns from the file 'tbl.dat', after applying a filter on the energy column of 500 to 7000, and then returns the column values in the x and y variables as NumPy arrays.
Functions and methods
The Crates module provides a number of routines for common tasks, like get_colvals. For more complex, uncommon routines, there are also a large number of methods provided by the objects themselves. Try the Python dir and help commands for more information: e.g.
>>> cr = read_file('evt.fits') >>> x = cr.get_column('x') >>> dir(x) ... >>> help(x)
Examples
Example 1
>>> cr = read_file("evt2.fits") >>> print(get_keyval(cr, "OBJECT")) ELAIS-S1 A >>> print(get_keyval(cr, "EXPOSURE") / 1000) 31.7432921583
Here we get the values of the OBJECT and EXPOSURE keywords from the header of evt2.fits. The return value from get_keyval() uses the appropriate Python type, so OBJECT is a string and the exposure time is a number.
Example 2
>>> from pycrates import * >>> cr = read_file("evt2.fits[ccd_id=7,energy=300:7000]") >>> e = copy_colvals(cr, "energy") >>> emin = e.min() / 1000 >>> emax = e.max() / 1000 >>> emean = e.mean() / 1000 >>> print(f"Mean E = {emean} min= {emin} max= {emax}") Mean E = 3.10554851929 min= 0.300000335693 max= 6.99996289063
Here we read in the energy column from an event file and calculate the minimum, maximum and mean energy in keV.
Example 3
>>> import numpy as np >>> from pycrates import * >>> cr = read_file("0.5-7.0_bin2.img") >>> img = copy_piximgvals(cr) >>> logimg = np.log10(img) RuntineWarning: divide by zero encountered in log10 >>> from matplotlib import pyplot as plt >>> plt.imshow(logimg, origin='lower') >>> expmap = read_file("2.3_bin2.expmap") >>> plt.imshow(expmap.get_image().values, alpha=0.2, origin='lower',cmap="gray",vmin=1,vmax=10)
Here we display the logarithm of the pixel values using the matplotlib imshow command and then overlay the exposure map for the observation, using transparency to ensure that the image can still be seen.
The divide-by-zero warning
The warning about divide by zero comes from NumPy and can be turned off using the seterr routine; for example
>>> olderr = np.seterr(divide='ignore')
Example 4
>>> x = np.arange(1, 10) >>> y = np.sin(x) * np.cos(x) >>> z = x**2 + y**2 >>> xcol = CrateData() >>> xcol.name = "x" >>> xcol.values = x >>> ycol = CrateData() >>> ycol.name = "y" >>> ycol.values = y >>> zcol = CrateData() >>> zcol.name = "zz" >>> zcol.values = z >>> zcol.unit = 'cm**2 s' >>> cr = TABLECrate() >>> add_col(cr, xcol) >>> add_col(cr, ycol) >>> add_col(cr, zcol) >>> write_file(cr, "out.fits") >>> write_file(cr, "out.dat[opt kernel=text/simple]") >>> quit() unix% cat out.dat #TEXT/SIMPLE # x y zz 1 4.5464871341284e-01 1.206705452608 2 -3.7840124765396e-01 4.143187504226 3 -1.3970774909946e-01 9.019518255158 4 4.9467912331169e-01 16.24470743504 5 -2.7201055544468e-01 25.07398974227 6 -2.6828645900022e-01 36.07197762408 7 4.9530367784744e-01 49.24532573329 8 -1.4395165833253e-01 64.02072207994 9 -3.7549362338584e-01 81.14099546120
Here we create two files containing the contents of the x, y, and z arrays in columns called "x", "y", and "zz" respectively. The file out.fits is a FITS binary table whereas out.dat is an ASCII file (see ahelp dmascii for more information on ASCII support in the CIAO Data model).
The make_table_crate routine from the crates_contrib.utils module can be used to simplify the above.
Example 5
>>> ivals = np.arange(12).reshape(3, 4) >>> cd = CrateData() >>> cd.values = ivals >>> cr = IMAGECrate() >>> add_piximg(cr, cd) >>> cr.name = "SIMPLE" >>> write_file(cr, "img.fits")
Here we create an image, with dimensions of 4 (x) by 3 (y), add it to an IMAGECrate using add_piximg (note that add_image is a ChIPS call that displays an image), and write it out to the file img.fits. After these commands we have:
>>> print(cr) Crate Type: <IMAGECrate> Crate Name: SIMPLE >>> quit() unix% dmlist img.fits blocks -------------------------------------------------------------------------------- Dataset: img.fits -------------------------------------------------------------------------------- Block Name Type Dimensions -------------------------------------------------------------------------------- Block 1: SIMPLE Image Int4(4x3) unix% dmstat img.fits centroid- SIMPLE min: 0 @: ( 1 1 ) max: 11 @: ( 4 3 ) mean: 5.5 sigma: 3.4520525295 sum: 66 good: 12 null: 0
The make_image_crate routine from the crates_contrib.utils module can be used to simplify the above.
Example 6
unix% cat qconv.py #!/usr/bin/env python import sys import pycrates as pyc cr = pyc.read_file(sys.argv[1]) sky = cr.get_transform("SKY") x = float(sys.argv[2]) y = float(sys.argv[3]) lcoord = [[x, y]] scoord = sky.apply(lcoord) print(f"Logical {lcoord[0]} -> SKY {scoord[0]}")
This simple Python script (which has no sanity checks such as ensuring the number of command-line arguments is correct) will convert the logical coordinates given on the command line to SKY coordinates using the transform taken from the first argument. An example run (which assumes the executable bit is set) is given below:
unix% ./qconv.py img.fits 1 1 Logical [1.0, 1.0] -> SKY [ 2009.5 3149.5]
Loading Crates
The Crates module is automatically imported into Sherpa sessions, otherwise use one of the following:
from pycrates import *
or
import pycrates
Documentation
The Crates and transform library ahelp documentation can be listed by saying ahelp -c crates and ahelp -c transform
In particular: ahelp read_file, ahelp read_dataset, ahelp crate, ahelp cratedataset, ahelp cratedata, and ahelp cratekey.
There is also Python documentation available, on the module itself - e.g.
>>> import pycrates >>> help(pycrates)
or for specific functions and methods
>>> help(read_file) >>> help(cr.get_colnames)
Objects and metadata
The Crates library uses a set of Python objects to represent data. These objects provide access to the data and metadata - such as units, description, and other fields - stored in the files.
Object | Description |
---|---|
TABLECrate, IMAGECrate | Represents a block of a file containing a table - a set of columns - or a single n-Dimensional image. |
CrateDataset, PHACrateDataset, RMFCrateDataset | A set of blocks stored in a single file. |
CrateData | This is used to represent column and image data. |
CrateKey | A keyword, containing the name, value, and optional unit and description fields. |
CrateSubspaceData | Represent the filtering applied to a column or image. |
Creating objects
Objects can be created using the normal Python idiom, by calling the constructor, or - in some cases - can be created by routines such as read_file and get_key.
Related objects
The Crates library also uses objects from the transforms and region modules.
Subspace
The subspace information stored in a file can be accessed with the get_subspace_data method of a crate. There can be multiple blocks of subspace data - normally one per ACIS chip but combining filters with OR rather than AND will also lead to this - which means that you need to provide an integer and column name.
crate.get_subspace_data(cptnum, item)
Here crate refers to the return value of read_file, the cptnum argument is a positive integer, indicating the component number, and item is a string indicating the column or axis name. Note that in CIAO 4.15 there is no way to determine how many blocks there are in a file or what columns are stored in the subspace block.
>>> cr = read_file('a2142_smoothed.fits') >>> s1 = cr.get_subspace_data(1, 'sky') >>> print(s1) Name: sky: x, y Unit: Range Minimum: [] Range Maximum: [] Region String: Box(3840,3670,1460,1460) >>> sx = cr.get_subspace_data(1, 'x') >>> sy = cr.get_subspace_data(1, 'y') >>> print(sx) Name: x Unit: Range Minimum: [3110.] Range Maximum: [4570.] Region String: DEFAULT >>> print(sy) Name: y Unit: Range Minimum: [2940.] Range Maximum: [4400.] Region String: DEFAULT >>> import region >>> region.regPrintRegion(s1.region) 1 Box(3840,3670,1460,1460) (Flag_Coord: Unknown) (Flag_Radius: Unknown) >>> s2 = cr.get_subspace_data(1, 'time') >>> print(s2) Name: time Table Name: GTI3 Unit: Range Minimum: [2.29755146e+08 2.29758594e+08 2.29795394e+08] Range Maximum: [2.29758591e+08 2.29795391e+08 2.29800307e+08] Region String: DEFAULT >>> s3 = cr.get_subspace_data(1, 'ccd_id') >>> print(s3) Name: ccd_id Unit: Range Minimum: [3] Range Maximum: [3] Region String: DEFAULT
The return value - a CrateSubspaceData object - has the following fields:
Field | Description |
---|---|
name | The column name. |
unit | The units of the column, or ''. |
range_min | The minimum value of the data; this can contain multiple values when sets of ranges were used to filter the column. |
range_max | The maximum value of the data; this can contain multiple values when sets of ranges were used to filter the column. |
region | If a spatial filter was applied then this is a region object representing the filter, otherwise it is None. |
Two subspace objects can be compared using the Python equality check; e.g.
>>> cr1.get_subspace(1, "time") == cr1.get_subspace(2, "time")
There is no way in CIAO 4.15 to add to or delete from the subspace information in a Crate.
History and Comments
The COMMENT and HISTORY records can be retrieved from a Crate with the get_comment_records and get_history_records methods respectively. As an example:
>>> cr = pycrates.read_file('evt.fits') >>> hist = cr.get_history_records() >>> comm = cr.get_comment_records()
The get_all_records method returns both COMMENT and HISTORY records. New records can be added using the add_record method on the crate, and the pycrates add_record, add_comment, and add_history functions, as shown in the following fanciful example:
>>> cr.add_record('COMMENT', 'Yeah yeah how groovy') >>> pycrates.add_comment(cr, 'Yes, very groovy')
History entries can be created using the history module:
>>> import history >>> pnames = ["infile", "outfile", "grooviness"] >>> pvals = ["okay.fits", "better.fits", 3] >>> hist = history.HistoryRecord(tool='groovy', param_names=pnames, param_vals=pvals) >>> pycrates.add_history(cr, hist)
The write_file and write_dataset routines support an optional history parameter to control whether history and comment records are written out or not.
Changes in CIAO 4.15
Crates can now read in images and tables with missing, or blank, names for WCS components (rather than causing a run-time exception).
Changes in CIAO 4.14
BLANK keyword handling
If an image contains the BLANK keyword then it is no-longer ignored, but will be retained when the file is read in - accessible by the get_nullval() method on the image object returned by the Crate's get_image() method - and will also now be written out (for appropriate image data types).
Changes in CIAO 4.13
New functions
The read_dataset and write_dataset routines are now exported from pycrates (they were previously only available from the pycrates.hlui module).
Improvements
The set_colvals routine can now accept a NumPy array and change a component of a vector column (e.g. the "X" component of "SKY(X, Y)"), and a number of corner cases have been fixed with the subspace handling.
Changes in CIAO 4.11
Memory leaks
A number of memory leaks have been fixed in the Crates modules, and error conditions are now better handled in a number of low-level routines.
History and Comments
Crates now supports HISTORY and COMMENT keywords: that is, they are accessible from the crate using methods such as get_comment_records and get_history_records, and will be written out when the file is saved. Note that the order of these records (with respect to the keywords) is not guaranteed to be maintained.
The history module has been added to help creating history records.
Please use the Python help function for these methods, as there are no ahelp files for them.
Changes in CIAO 4.8
Adding columns
The add_column method of a table crate now works correctly when the column number is set to 0 (previously the new column was added to the end of the table, now it is the first column). The add_column method and add_col call now create an empty subspace entry for vector columns, accessible with the get_subspace_data method of the crate.
Support for variable-length arrays
Support for variable-length arrays has been improved and the CrateData object now supports the is_varlen and get_fixed_length_array methods.
Tri-state logical columns
The FITS convention for boolean columns supports a "null" value, which means that it can represent three states: true, false, and unknown. Any such null, or unknown, value will be converted to False when the data is read in to a Crate (e.g. when read by read_file), and so the information that this cell value was a null will be lost.
Bugs
- Crates is unable to write files that have REGION filters (subspace) stored as additional blocks in FITS files.
Specificially if the DSREF keywords reference REGION blocks.
- Crates does not support np.uint32 (unsigned 32bit integers) arrays as images.
An error is raised when trying to write the crates to a file.
- Trying to create a table with 0 rows with an vector column will crash when the crate is written.
>>> cr = TABLECrate () >>> col = CrateData () >>> col.name = 'POS' >>> col.vdim = 2 >>> cpt_list = ['X','Y'] >>> cpt_list = CrateDict() >>> for nn in ['X','Y']: ... cpt = CrateData() ... cpt.name = nn ... cpt.parent = col ... cpt.vdim = 1 ... cpt_list[nn] = cpt ... >>> col._set_cptslist(cpt_list) >>> cr.add_column (col) >>> col.values = np.empty (0, dtype=np.float) >>> cr.write ('tmp.fits', clobber=True) Segmentation fault
- Crates has problems trying to populate a string column.
-
>>> cd = CrateData () >>> cd.values = np.empty (1, dtype='|S1') >>> cd.values.fill ('b') >>> cd.values array(['\xf8'], dtype='|S1')
The array values should be filled a single letter 'b'
- Crates cannot read a table that has 0 rows and contains vector array column(s).
>>> tab = read_file("acis_fov.fits[ccd_id=10]") >>> print(tab.get_colnames()) ValueError: all the input arrays must have same number of dimensions
- Crates generates a misleading "File exists but is not readble" error when asked to open a non-existent block within the file.
-
>>> tab = read_file("myfile[does_not_exist"]) IOError: File exists but is not readable.
Whereas the following works:
>>> tab = read_file("myfile")
- Problem reading images containing unnamed WCS transforms
-
Crates has problems reading images that contain WCS transforms, but have chosen to omit the transform names. For example in a standard Chandra observtaion the SKY X,Y image axes have a WCS transform to RA and DEC.
Some older files may have images where the actual names of the transformed axes was omitted. This has been seen in some ROSAT weight maps (WMAPs) attached to older spectrum files.
>>> ww = read_file("orig.pi[wmap]") >>> ii = ww.get_image() RuntimeError:
- Problem with single byte bit columns
Crates has problems when trying to write out a bit column, when the column has less than 8 bits (so fill only 1 byte).
- Subspace information corrupted when images are deleted.
-
The subspace information for an image is corrupted when the image values are replaced (image deleted and then re-added) as one might do to change the data-type of the image.
>>> fimgcrate = read_file (infile) >>> fimgcrate_image = fimgcrate.get_image() >>> values = fimgcrate_image.values >>> fimgcrate.delete_image() >>> values = values.astype("float32") >>> fimgcrate_image.values = values >>> fimgcrate.add_image(fimgcrate_image) >>> fimgcrate.write(outfile) /soft/ciao/lib/python2.7/site-packages/pycrates/io/dm_backend.py:1361: UserWarning: Unable to delete columns or images in update mode. warnings.warn("Unable to delete columns or images in update mode.")
- Crates will convert all transforms into their binned form.
-
Transforms are assumed to be applied to image pixels, so when they are created they are adjusted to match what would be an image pixel boundary, even if the transform is created on a table column.
So, for example trying to create a transform that converts degrees F to C:
tempF = +32 + 1.8 * tempC
A linear transform with scale=1.8 and offset=32, is written out as
tempF = +32.90 [degree F] +1.80 * (tempC -0.50)
While mathematically correct, the extra half "pixel" offset is unnecessary when dealing with transforms applied to table columns.
- Crates will not copy the keywords in an empty/null FITS Primary extension
-
The keywords in the FITS primary extension are not written by the CrateDataset's write() method
>>> from pycrates import * >>> tab = read_file(infile) >>> tab.get_dataset().write(outfile)
If infile has a NULL Primary extesnion (only keywords, no data), the keywords are not written to the output file.
- Writing NaN to keywords causes crash
-
Attempting to write a NaN value to a keyword results in a crash of the python interpreter
>>> tab = read_file("a.fits") >>> key = CrateKey() >>> key.name="foobar" >>> key.value = np.nan >>> tab.add_key( key ) >>> write_file( tab, "b.fits") RuntimeError: dmKeyWrite() could not write key. 'foobar' >>> quit() Exception IOError: IOError('FITS error 402 writing key foobar',) in <boundmethod CrateDataset.__del__ of Crate Dataset: ... *** glibc detected *** /export/ciao-4.5/ots/bin/python: double free or corruption (!prev): 0x0000000003026480 *** ... (core dumped) ipython --profile chips -i -c "\"${cmd}\""
- 1D Image transforms
-
pycrates can only access the 1st transform associated with an image. If a 2D image has only 1 transform (eg sky=(x,y)) then there is no problem; however, if the image has two seprate 1D transforms (eg time and pi), pycrates only provides access to the 1st (x) axis.
>>> from pycrates import * >>> cr = read_file('test.dat[bin kt=1.15:1.55:0.1,abund=0.8:1.2:0.2;factor]') >>> cr.get_axisnames() ['kt'] >>> cr.get_axis('abund') KeyError: 'abund not found in list of image axes.' >>> cr.get_transform('kt') <pytransform.LINEARTransform; proxy of <Swig Object of type 'LINEARTransform *' at 0x103692150> > >>> cr.get_transform('abund') KeyError: 'abund not found in list of image axes.'
- Region filters in the crates subspace are not writen when the file is saved.
- Byte datatype subspace columns
pycrates may crash if the file contains subspace columns with byte data-type. Examples include some HRC datasets with byte type SUB_MJF.
-
Workaround:
Workaround: for the HRC case, you can remove the subspace column with
prior to loading the file into crates.% dmcopy hrc_evt[subspace -sub_mjf] hrc_evt_mod
- Write access is not robustly checked.
-
Users need to be careful when trying to modify a file in place as the checks on whether or not a file is writeable are not robust. Simply specifying mode="rw" will not produce an error nor an exception if the file is not actually writeable.
unix% chmod 400 myfile.fits unix% python >>> from pycrates import * >>> rr = read_file("hrcf01801N006_evt2.fits", mode="rw") >>> # do something to modify file >>> rr.write()
The above sequence will not geneate an exception even though the file is not writeable.
- Trying to write a file with a Byte data-type in the subspace fails.
-
HRC event files have a byte type (8 bit unsigned integer) SUB_MJF subspace column present. Trying to read in the file into a crate and writing it back out will fail.
unix% dmlist hrcf01801N006_evt2.fits subspace -------------------------------------------------------------------------------- Data subspace for block EVENTS: Components: 1 Descriptors: 33 -------------------------------------------------------------------------------- ... 31 ENDMNF Int4 0:127 32 SUB_MJF Byte 0:64 33 CLKTICKS Int4 0:1091567608 unix% python >>> from pycrates import * >>> rr = read_file("hrcf01801N006_evt2.fits") >>> write_file(rr, "/tmp/copy") Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/export/ciao-4.5/lib/python2.7/site-packages/pycrates/hlui.py", line 985, in write_file crate.write(outfile=filename, clobber=clobber) File "/export/ciao-4.5/lib/python2.7/site-packages/pycrates/tablecrate.py", line 294, in write backend.write( self, outfile=outfile ) File "/export/ciao-4.5/lib/python2.7/site-packages/pycrates/io/dm_backend.py", line 534, in write self.__write_block( crate, close_flag ) File "/export/ciao-4.5/lib/python2.7/site-packages/pycrates/io/dm_backend.py", line 578, in __write_block self.__write_subspace(block, crate) File "/export/ciao-4.5/lib/python2.7/site-packages/pycrates/io/dm_backend.py", line 626, in __write_subspace ssitem.unit, ssitem.range_min, ssitem.range_max ) TypeError: dmSubspaceColCreate() mins or maxes argument is not a supported type.
The only workaround is to remove the SUB_MJF subspace before reading it into a crate.
unix% dmcopy "hrcf01801N006_evt2.fits[subspace -SUB_MJF]" copy_evt.fits unix% python >>> from pycrates import * >>> rr = read_file("copy_evt.fits") >>> write_file(rr, "copy2")
- Using numpy views of arrays can lead to data corruption.
-
numpy uses a special indexing scheme to access arrays that have been sliced (ie truncated at either end) or when for example transposing 2D arrays. The origianal data are preserved and the user only sees a view of the array.
The crates python to datamodel C interface does not handle views correctly. It may result in data being truncated or simply producing nonsensical results.
Users should make sure that any arrays sent to pycrates are in C_CONTIGUOUS order and ALGINED
>>> foo = np.arange(10).reshape(5,2) >>> foo2 = bob.T >>> foo.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : False WRITEABLE : True ALIGNED : True UPDATEIFCOPY : False >>> foo2.flags C_CONTIGUOUS : False F_CONTIGUOUS : True OWNDATA : False WRITEABLE : True ALIGNED : True UPDATEIFCOPY : False
- Files with 1D linear transforms
-
pycrates does not support 1D, linear transforms. It tries to create a 2D transform which causes memory corruption and may lead to either a crash (Segmentation Violation) or could lead to incorrect results.
Users can check if their file contains a 1D transform by using dmlist to list the columns and look for any coordinates transforms that look like
unix% dmlist myfile.fits cols ... World Coord Transforms for Columns in Table Block EVENTS -------------------------------------------------------------------------------- ColNo Name 3: CPC(CPCX) = (+0)[mm] +(+0.0240)* (chip(chipx)-(+0.50)) (CPCY) (+0) (+0.0240) ( (chipy) (+0.50)) 4: MSC(PHI ) = (+0)[deg] +TAN-P[(+0.000136667)* (det(detx)-(+4096.50))] (THETA) (+0) (+0.000136667) ( (dety) (+4096.50)) 5: EQPOS(RA ) = (+270.1153)[deg] +TAN[(-0.000136667)* (sky(x)-(+4096.50))] (DEC) (-24.0418 ) (+0.000136667) ( (y) (+4096.50)) 6: pha_COORD = pha
Here, the pha column has a 1D linear transform attached to it and would cause problems with pycrates.
Another example would be
unix% dmlist dmextract29b.out cols ... -------------------------------------------------------------------------------- World Coord Transforms for Columns in Table Block HISTOGRAM -------------------------------------------------------------------------------- ColNo Name 4: CEL_R = +0 [arcsec] +0.4920 * (R -0) 9: CEL_AREA = +0 [arcsec**2] +0.2421 * (AREA -0) 17: CEL_BRI = +0 [count/arcsec**2] +4.1311 * (SUR_BRI -0) 18: CEL_BRI_ERR = +0 [count/arcsec**2] +4.1311 * (SUR_BRI_ERR -0)
All these columns are 1D linear transforms that would cause pycrates a problem.
Some example of files with linear transforms include
- Radial profiles output from dmextract
- ACIS Blank Sky background files with '2005' date
- Event files
- Aspect histogram files created by asphist
Currently there is no generic work around. If you do not need to use the column with the linear transform, you can just exclude it using a [cols -column_name] filter. If you need to use the column that has a transform attached, contact CXC Helpdesk and we will try to help with a custom solution.
- Adding a column without a name creates a column called () in the output file
>>> cr = TABLECrate() >>> cd = CrateData() >>> cd.values = np.arange(20,31) >>> add_col(cr, cd) >>> cr.get_colnames() [''] >>> cr.write("/tmp/temp.fits") >>> !dmlist /tmp/temp.fits cols -------------------------------------------------------------------------------- Columns for Table Block HDU2 -------------------------------------------------------------------------------- ColNo Name Unit Type Range 1 () Int4 -
-
Numerical subspace ranges are not propagated correctly
(Mac OS X) -
This file was read with CRATES and then written out again. The numerical subspace ranges have been replaced by "DEFAULT":
dmlist pha_copy.fits"[REGION]" subspace -------------------------------------------------------------------------------- Data subspace for block REGION: Components: 1 Descriptors: 11 -------------------------------------------------------------------------------- --- Component 1 --- 1 SPEC_NUM Int2 1:16384 2 ROWID String 3 SHAPE String 4 TG_R Real8 DEFAULT 5 TG_D Real8 DEFAULT 6 R Real8 DEFAULT 7 ROTANG Real8 DEFAULT 8 COMPONENT Int2 DEFAULT 9 INCLUDE Int2 DEFAULT 10 TG_SRCID Int2 DEFAULT 11 TG_M Int2 DEFAULT
Caveats
- Crates does not support subspaces on byte columns.
- OGIP compliance
-
crates checks the input PHA, RMF, and ARF files types for adherence to the OGIP standards: here and here.
Some older datasets, eg from the ROSAT archive, may not be entirely compliant with these standards and therefore may be unreadable by crates.
- Cannot add rows to a column that is part of a virtual column.
Users can not add rows a column which is a component of a vector using Crates (the new values are set to 0). User can extend scalar and array columns. To work around this, users must add rows the vector column itself rather than the components.
See Also
- contrib
- add_colvals, make_image_crate, make_table_crate, scale_image_crate, smooth_image_crate, write_arrays, write_columns
- crates
- add_col, add_key, add_piximg, col_exists, copy_colvals, copy_piximgvals, cratedata, cratekey, create_vector_column, create_virtual_column, delete_col, delete_key, delete_piximg, get_axis_transform, get_col, get_col_names, get_colvals, get_crate_item_type, get_crate_type, get_key, get_key_names, get_keyval, get_number_cols, get_number_rows, get_piximg, get_piximg_shape, get_piximgvals, get_transform, get_transform_matrix, is_pha, is_rmf, is_virtual, key_exists, print_crate_names, read_file, read_pha, read_rmf, set_colvals, set_key, set_keyval, set_piximgvals, write_file, write_pha, write_rmf